PC 40:8 (BioDeep_00000410761)

   

LipidSearch


代谢物信息卡片


1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphocholine

化学式: C48H80NO8P (829.562125)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 1.18%

分子结构信息

SMILES: CCCCCC=CCC=CCC=CCC=CCCCC(=O)OCC(COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CCCC=CCC=CCC=CCC=CCCCCC
InChI: InChI=1S/C48H80NO8P/c1-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-36-38-40-47(50)54-44-46(45-56-58(52,53)55-43-42-49(3,4)5)57-48(51)41-39-37-35-33-31-29-27-25-23-21-19-17-15-13-11-9-7-2/h14-17,20-23,26-29,32-35,46H,6-13,18-19,24-25,30-31,36-45H2,1-5H3/b16-14+,17-15+,22-20+,23-21+,28-26+,29-27+,34-32+,35-33+/t46-/m1/s1

描述信息

Found in mouse muscle; TwoDicalId=49; MgfFile=160824_Muscle_DHA_Neg_12_never; MgfId=758
Found in mouse heart; TwoDicalId=24; MgfFile=160902_Heart_DHA_Neg_12_never; MgfId=808

同义名列表

29 个代谢物同义名

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phosphocholine; PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:2(9Z,12Z)); PC(18:2_22:6); PC(40:8); PC 40:8; 1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphocholine; PC(22:4(7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)); PC(18:4_22:4); 1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphocholine; PC(20:5(5Z,8Z,11Z,14Z,17Z)/20:3(8Z,11Z,14Z)); PC(20:3_20:5); 1-(8Z,11Z,14Z-eicosatrienoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphocholine; PC(20:3(8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)); 1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphocholine; PC(18:4(6Z,9Z,12Z,15Z)/22:4(7Z,10Z,13Z,16Z)); 1,2-di-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine; 1,2-Diarachidonyl-L-alpha-glycerophosphorylcholine; PC(20:4(5Z,8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)); 1,2-Diarachidonylphosphatidylcholine; Diarachidonoylphosphatidylcholine; Diarachidonyl phosphatidylcholine; L-Diarachidonoyl lecithin; Diarachidonyl lecithin; PC(20:4/20:4); 1,2-di-(5E,8E,11E,14E-eicosatetraenoyl)-sn-glycero-3-phosphocholine; PC(20:4(5E,8E,11E,14E)/20:4(5E,8E,11E,14E)); 1-(9Z,12Z-octadecadienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphocholine; PC(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)); PC(18:2/22:6)



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Xubo Lin, Alemayehu A Gorfe. Understanding Membrane Domain-Partitioning Thermodynamics of Transmembrane Domains with Potential of Mean Force Calculations. The journal of physical chemistry. B. 2019 02; 123(5):1009-1016. doi: 10.1021/acs.jpcb.8b10148. [PMID: 30638009]
  • Carla M Rosetti, Guillermo G Montich, Claudio Pastorino. Molecular Insight into the Line Tension of Bilayer Membranes Containing Hybrid Polyunsaturated Lipids. The journal of physical chemistry. B. 2017 02; 121(7):1587-1600. doi: 10.1021/acs.jpcb.6b10836. [PMID: 28139120]
  • Virginia Miguel, Maria A Perillo, Marcos A Villarreal. Improved prediction of bilayer and monolayer properties using a refined BMW-MARTINI force field. Biochimica et biophysica acta. 2016 11; 1858(11):2903-2910. doi: 10.1016/j.bbamem.2016.08.016. [PMID: 27591685]
  • Matheus Malta de Sá, Vishnu Sresht, Carlota Oliveira Rangel-Yagui, Daniel Blankschtein. Understanding Miltefosine-Membrane Interactions Using Molecular Dynamics Simulations. Langmuir : the ACS journal of surfaces and colloids. 2015 Apr; 31(15):4503-12. doi: 10.1021/acs.langmuir.5b00178. [PMID: 25819781]
  • Jamie L Betker, Thomas J Anchordoquy. Relating toxicity to transfection: using sphingosine to maintain prolonged expression in vitro. Molecular pharmaceutics. 2015 Jan; 12(1):264-73. doi: 10.1021/mp500604r. [PMID: 25418523]
  • Ipsita Basu, Chaitali Mukhopadhyay. Effect of temperature on the phase behaviour of fully saturated DAPC lipid bilayer: a comparative molecular dynamics simulation study. Advances in experimental medicine and biology. 2015; 842(?):263-77. doi: 10.1007/978-3-319-11280-0_17. [PMID: 25408349]
  • Ipsita Basu, Amitabha Chattopadhyay, Chaitali Mukhopadhyay. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch. Biochimica et biophysica acta. 2014 Jan; 1838(1 Pt B):328-38. doi: 10.1016/j.bbamem.2013.10.005. [PMID: 24125683]
  • Markus Ritter, Sabine Schmidt, Martin Jakab, Markus Paulmichl, Robert Henderson. Evidence for the formation of symmetric and asymmetric DLPC-DAPC lipid bilayer domains. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2013; 32(1):46-52. doi: 10.1159/000350122. [PMID: 23867833]
  • Jeffery B Klauda, Viviana Monje, Taehoon Kim, Wonpil Im. Improving the CHARMM force field for polyunsaturated fatty acid chains. The journal of physical chemistry. B. 2012 Aug; 116(31):9424-31. doi: 10.1021/jp304056p. [PMID: 22697583]
  • Eric A Smith, Christiaan M van Gorkum, Phoebe K Dea. Properties of phosphatidylcholine in the presence of its monofluorinated analogue. Biophysical chemistry. 2010 Mar; 147(1-2):20-7. doi: 10.1016/j.bpc.2009.12.005. [PMID: 20064684]
  • David Balgoma, Olimpio Montero, María A Balboa, Jesús Balsinde. Calcium-independent phospholipase A2-mediated formation of 1,2-diarachidonoyl-glycerophosphoinositol in monocytes. The FEBS journal. 2008 Dec; 275(24):6180-91. doi: 10.1111/j.1742-4658.2008.06742.x. [PMID: 19016853]
  • Siewert J Marrink, Alex H de Vries, Thad A Harroun, John Katsaras, Stephen R Wassall. Cholesterol shows preference for the interior of polyunsaturated lipid membranes. Journal of the American Chemical Society. 2008 Jan; 130(1):10-1. doi: 10.1021/ja076641c. [PMID: 18076174]
  • Debasis Manna, Wonhwa Cho. Real-time cell assays of phospholipase A(2)s using fluorogenic phospholipids. Methods in enzymology. 2007; 434(?):15-27. doi: 10.1016/s0076-6879(07)34002-0. [PMID: 17954240]
  • Matthew J Hasik, Dennis H Kim, Laurens E Howle, David Needham, Donald P Prush. Evaluation of synthetic phospholipid ultrasound contrast agents. Ultrasonics. 2002 Nov; 40(9):973-82. doi: 10.1016/s0041-624x(02)00384-0. [PMID: 12385954]
  • L A Bagatolli, E Gratton. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Biophysical journal. 2000 Jul; 79(1):434-47. doi: 10.1016/s0006-3495(00)76305-3. [PMID: 10866969]
  • Y Morishita, Y Iinuma, N Nakashima, A Kadota, A Miike, T Tadano. Enzymatic assay of calcium in serum with phospholipase D. Clinical chemistry. 1999 Dec; 45(12):2280-3. doi: 10.1093/clinchem/45.12.2280. [PMID: 10585369]
  • S C Semple, A Chonn, P R Cullis. Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry. 1996 Feb; 35(8):2521-5. doi: 10.1021/bi950414i. [PMID: 8611555]
  • J F Faucon, J M Bonmatin, J Dufourcq, E J Dufourc. Acyl chain length dependence in the stability of melittin-phosphatidylcholine complexes. A light scattering and 31P-NMR study. Biochimica et biophysica acta. 1995 Mar; 1234(2):235-43. doi: 10.1016/0005-2736(94)00298-4. [PMID: 7696299]
  • T H Huang, C W Lee, S K Das Gupta, A Blume, R G Griffin. A 13C and 2H nuclear magnetic resonance study of phosphatidylcholine/cholesterol interactions: characterization of liquid-gel phases. Biochemistry. 1993 Dec; 32(48):13277-87. doi: 10.1021/bi00211a041. [PMID: 8241184]
  • M L Blank, Z L Smith, F Snyder. Contributing factors in the trafficking of [3H]arachidonate between phospholipids. Biochimica et biophysica acta. 1992 Mar; 1124(3):262-72. doi: 10.1016/0005-2760(92)90138-l. [PMID: 1576167]
  • R R Bird, B Hall, D Chapman, K E Hobbs. Material thrombelastography: an assessment of phosphorylcholine compounds as models for biomaterials. Thrombosis research. 1988 Sep; 51(5):471-83. doi: 10.1016/0049-3848(88)90113-2. [PMID: 3175989]
  • I Ogihara-Umeda, S Kojima. Increased delivery of gallium-67 to tumors using serum-stable liposomes. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 1988 Apr; 29(4):516-23. doi: NULL. [PMID: 3351606]
  • A Montfoort, K Bezstarosti, M M Groh, T J Metsä-Ketelä. The influence of the lipid composition on the degree of lipid-peroxidation of liposomes. Biochemistry international. 1987 Sep; 15(3):525-43. doi: ". [PMID: 3426626]
  • F H Chilton, R C Murphy. Stimulated production and natural occurrence of 1,2-diarachidonoylglycerophosphocholine in human neutrophils. Biochemical and biophysical research communications. 1987 Jun; 145(3):1126-33. doi: 10.1016/0006-291x(87)91554-3. [PMID: 3111464]