DEOXYNIVALENOL (BioDeep_00000408313)

   

natural product


代谢物信息卡片


DEOXYNIVALENOL

化学式: C15H20O6 (296.125982)
中文名称: 脱氧雪腐镰刀菌烯醇
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=CC2C(C(C1=O)O)(C3(CC(C(C34CO4)O2)O)C)CO
InChI: InChI=1S/C15H20O6/c1-7-3-9-14(5-16,11(19)10(7)18)13(2)4-8(17)12(21-9)15(13)6-20-15/h3,8-9,11-12,16-17,19H,4-6H2,1-2H3/t8-,9-,11-,12-,13-,14-,15+/m1/s1

描述信息

A trichothecene mycotoxin produced by Fusarium to which wheat, barley, maize (corn) and their products are susceptible to contamination.
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
CONFIDENCE isolated standard

同义名列表

1 个代谢物同义名

DEOXYNIVALENOL



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Philippe Guerre, Elodie Lassallette, Ugo Beaujardin-Daurian, Angelique Travel. Fumonisins alone or mixed with other fusariotoxins increase the C22-24:C16 sphingolipid ratios in chicken livers, while deoxynivalenol and zearalenone have no effect. Chemico-biological interactions. 2024 May; 395(?):111005. doi: 10.1016/j.cbi.2024.111005. [PMID: 38615975]
  • Yi He, Xiujuan Yang, Xiaobo Xia, Yuhua Wang, Yifan Dong, Lei Wu, Peng Jiang, Xu Zhang, Cong Jiang, Hongxiang Ma, Wujun Ma, Cong Liu, Ryan Whitford, Matthew R Tucker, Zhengguang Zhang, Gang Li. A phase-separated protein hub modulates resistance to Fusarium head blight in wheat. Cell host & microbe. 2024 May; 32(5):710-726.e10. doi: 10.1016/j.chom.2024.04.002. [PMID: 38657607]
  • Vishnukiran Thuraga, Farideh Ghadamgahi, Fantaye Ayele Dadi, Ramesh Raju Vetukuri, Aakash Chawade. A new bacterial consortia for management of Fusarium head blight in wheat. Scientific reports. 2024 05; 14(1):10131. doi: 10.1038/s41598-024-60356-4. [PMID: 38698085]
  • Aliang Xia, Xuan Wang, Yingao Huang, Qing Yang, Meng Ye, Yankun Wang, Cong Jiang, Kaili Duan. The ING protein Fng2 associated with RPD3 HDAC complex for the regulation of fungal development and pathogenesis in wheat head blight fungus. International journal of biological macromolecules. 2024 May; 268(Pt 2):131938. doi: 10.1016/j.ijbiomac.2024.131938. [PMID: 38692539]
  • Xuzhao Mao, Lingping Li, Yakubu Saddeeq Abubakar, Yulong Li, Zenghong Luo, Meilian Chen, Wenhui Zheng, Zonghua Wang, Huawei Zheng. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of Fusarium graminearum. Journal of agricultural and food chemistry. 2024 May; 72(17):9637-9646. doi: 10.1021/acs.jafc.4c00593. [PMID: 38642053]
  • Weijie He, Tiantian Zhang, Mengru Zheng, Karim M Tabl, Tao Huang, Yucai Liao, Aibo Wu, Jingbo Zhang. Utilization of a Novel Soil-Isolated Strain Devosia insulae FS10-7 for Deoxynivalenol Degradation and Biocontrol of Fusarium Crown Rot in Wheat. Phytopathology. 2024 May; 114(5):1057-1067. doi: 10.1094/phyto-10-23-0412-kc. [PMID: 38451497]
  • Gang Niu, Qing Yang, Yihui Liao, Daiyuan Sun, Zhe Tang, Guanghui Wang, Ming Xu, Chenfang Wang, Jiangang Kang. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes. 2024 Apr; 15(4):. doi: 10.3390/genes15040475. [PMID: 38674409]
  • Akihiro Shirai, Ami Tanaka. Effects of ferulic acid combined with light irradiation on deoxynivalenol and its production in Fusarium graminearum. Fungal biology. 2024 04; 128(2):1684-1690. doi: 10.1016/j.funbio.2024.02.003. [PMID: 38575241]
  • Samia Berraies, Yuefeng Ruan, Ron Knox, Ron DePauw, Firdissa Bokore, Richard Cuthbert, Barbara Blackwell, Maria Antonia Henriquez, David Konkin, Bianyun Yu, Curtis Pozniak, Brad Meyer. Genetic mapping of deoxynivalenol and fusarium damaged kernel resistance in an adapted durum wheat population. BMC plant biology. 2024 Mar; 24(1):183. doi: 10.1186/s12870-023-04708-8. [PMID: 38475749]
  • Simon Schiwek, Matthäus Slonka, Mohammad Alhussein, Dennis Knierim, Paolo Margaria, Hanna Rose, Katja R Richert-Pöggeler, Michael Rostás, Petr Karlovsky. Mycoviruses Increase the Attractiveness of Fusarium graminearum for Fungivores and Suppress Production of the Mycotoxin Deoxynivalenol. Toxins. 2024 Mar; 16(3):. doi: 10.3390/toxins16030131. [PMID: 38535797]
  • Laura Righetti, Francesca Vanara, Renato Bruni, Claudia Sardella, Massimo Blandino, Chiara Dall'Asta. Investigating Metabolic Plant Response toward Deoxynivalenol Accumulation in Four Winter Cereals. Journal of agricultural and food chemistry. 2024 Feb; 72(6):3200-3209. doi: 10.1021/acs.jafc.3c06111. [PMID: 38315448]
  • Min Zhu, En-Qing Lu, Yong-Xia Fang, Guo-Wei Liu, Yu-Jie Cheng, Ke Huang, E Xu, Yi-Yu Zhang, Xiao-Jing Wang. Piceatannol Alleviates Deoxynivalenol-Induced Damage in Intestinal Epithelial Cells via Inhibition of the NF-κB Pathway. Molecules (Basel, Switzerland). 2024 Feb; 29(4):. doi: 10.3390/molecules29040855. [PMID: 38398607]
  • Panpan Huang, Xiao Yu, Huiquan Liu, Mingyu Ding, Zeyi Wang, Jin-Rong Xu, Cong Jiang. Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in Fusarium graminearum. Nature communications. 2024 Feb; 15(1):1216. doi: 10.1038/s41467-024-45502-w. [PMID: 38332031]
  • Jenna-Lee Price, Cobus Meyer Visagie, Hannalien Meyer, Neriman Yilmaz. Fungal Species and Mycotoxins Associated with Maize Ear Rots Collected from the Eastern Cape in South Africa. Toxins. 2024 02; 16(2):. doi: 10.3390/toxins16020095. [PMID: 38393173]
  • Milos Sevarika, Giovanni Beccari, Francesco Tini, Luisa Ederli, Ilaria Bellezza, Lorenzo Covarelli, Roberto Romani. Effect of the mycotoxins enniatin B and deoxynivalenol on the wheat aphid Sitobion avenae and on the predatory lacewing Chrysoperla carnea. Pest management science. 2024 Feb; ?(?):. doi: 10.1002/ps.8005. [PMID: 38312069]
  • Chao Sun, Chuncai Mao, Zhie Zhou, Jianhui Xiao, Wenwen Zhou, Juan Du, Jun Li. In Vitro Assessment of Ozone-Treated Deoxynivalenol by Measuring Cytotoxicity and Wheat Quality. Toxins. 2024 01; 16(2):. doi: 10.3390/toxins16020064. [PMID: 38393142]
  • Tianshuai Qi, Fumeng He, Xinqi Zhang, Jiaqi Wang, Zengli Zhang, Heran Jiang, Biao Zhao, Chong Du, Yunzhu Che, Xu Feng, Yingnan Wang, Fenglan Li. Genome-Wide Identification and Expression Profiling of Potato (Solanum tuberosum L.) Universal Stress Proteins Reveal Essential Roles in Mechanical Damage and Deoxynivalenol Stress. International journal of molecular sciences. 2024 Jan; 25(2):. doi: 10.3390/ijms25021341. [PMID: 38279341]
  • Cong Zhang, Fengjuan Chen, Youshuang Wang, Kefei Zhang, Xu Yang, Xuebing Wang. Tanshinone IIA protects intestinal epithelial cells from deoxynivalenol-induced pyroptosis. Ecotoxicology and environmental safety. 2024 Jan; 269(?):115743. doi: 10.1016/j.ecoenv.2023.115743. [PMID: 38035519]
  • Shijie Fan, Luxi Lin, Pingyang Li, Huihui Tian, Jialu Shen, Longzhu Zhou, Qingyu Zhao, Junmin Zhang, Yuchang Qin, Chaohua Tang. Selenomethionine protects the liver from dietary deoxynivalenol exposure via Nrf2/PPARγ-GPX4-ferroptosis pathway in mice. Toxicology. 2024 Jan; 501(?):153689. doi: 10.1016/j.tox.2023.153689. [PMID: 38040082]
  • Meiling Gao, Mohamed F Abdallah, Minggui Song, Yiqian Xu, Daiyuan Sun, Ping Lu, Jianhua Wang. Novel Endophytic Pseudescherichia sp. GSE25 Strain Significantly Controls Fusarium graminearum and Reduces Deoxynivalenol in Wheat. Toxins. 2023 12; 15(12):. doi: 10.3390/toxins15120702. [PMID: 38133206]
  • DanDan Meng, Xu Dong, XianFang He, Rui Pan, MingNa Sun, Yue Chu, Zhou Tong, XiaoTong Yi, Hui Fan, TongChun Gao, JinSheng Duan. Effects of wheat varieties, fungicides and application time on Fusarium head blight and deoxynivalenol contamination control in wheat. Pest management science. 2023 Dec; 79(12):4784-4794. doi: 10.1002/ps.7674. [PMID: 37471098]
  • Jing Jin, Bingxin Huangfu, Fuguo Xing, Wentao Xu, Xiaoyun He. Combined exposure to deoxynivalenol facilitates lipid metabolism disorder in high-fat-diet-induced obesity mice. Environment international. 2023 Dec; 182(?):108345. doi: 10.1016/j.envint.2023.108345. [PMID: 38008010]
  • Pengju Wang, Qin Yao, Xiangwen Meng, Xiaosong Yang, Xu Wang, Qirong Lu, Aimei Liu. Effective protective agents against organ toxicity of deoxynivalenol and their detoxification mechanisms: A review. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Dec; 182(?):114121. doi: 10.1016/j.fct.2023.114121. [PMID: 37890761]
  • Yuang Tu, Shiqi Liu, Peiran Cai, Tizhong Shan. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Comprehensive reviews in food science and food safety. 2023 09; 22(5):3951-3983. doi: 10.1111/1541-4337.13203. [PMID: 37421323]
  • Lifang Hu, Cong Guo, Jing Chen, Ruimin Jia, Yan Sun, Shang Cao, Ping Xiang, Yang Wang. Venturicidin A Is a Potential Fungicide for Controlling Fusarium Head Blight by Affecting Deoxynivalenol Biosynthesis, Toxisome Formation, and Mitochondrial Structure. Journal of agricultural and food chemistry. 2023 Aug; 71(33):12440-12451. doi: 10.1021/acs.jafc.3c02683. [PMID: 37566096]
  • Pengju Wang, Qing Yao, Dan Zhu, Xiaosong Yang, Qingjie Chen, Qirong Lu, Aimei Liu. Resveratrol protects against deoxynivalenol-induced ferroptosis in HepG2 cells. Toxicology. 2023 08; 494(?):153589. doi: 10.1016/j.tox.2023.153589. [PMID: 37419272]
  • Mubashar Hassan, Yanan Wang, Shahid Ali Rajput, Aftab Shaukat, Ping Yang, Muhammad Zahid Farooq, Qianhui Cheng, Mehboob Ali, Xiaomei Mi, Yu An, Desheng Qi. Ameliorative Effects of Luteolin and Activated Charcoal on Growth Performance, Immunity Function, and Antioxidant Capacity in Broiler Chickens Exposed to Deoxynivalenol. Toxins. 2023 Jul; 15(8):. doi: 10.3390/toxins15080478. [PMID: 37624235]
  • Yingrong Ye, Mingzhen Jiang, Xinyao Hong, Yiwu Fu, Yichun Chen, Hanpeng Wu, Youpeng Sun, Xia Wang, Ershun Zhou, Jingjing Wang, Zhengtao Yang. Quercetin Alleviates Deoxynivalenol-Induced Intestinal Damage by Suppressing Inflammation and Ferroptosis in Mice. Journal of agricultural and food chemistry. 2023 Jul; 71(28):10761-10772. doi: 10.1021/acs.jafc.3c02027. [PMID: 37392437]
  • Ruifen Kang, Honglei Qu, Yanxin Guo, Chuanliang Ji, Jie Cheng, Yantao Wang, Shimeng Huang, Lihong Zhao, Cheng Ji, Qiugang Ma. Toxicokinetics of Deoxynivalenol in Dezhou Male Donkeys after Oral Administration. Toxins. 2023 06; 15(7):. doi: 10.3390/toxins15070426. [PMID: 37505695]
  • Sigita Janaviciene, Eimantas Venslovas, Grazina Kadziene, Neringa Matelioniene, Zane Berzina, Vadims Bartkevics, Skaidre Suproniene. Diversity of Mycotoxins Produced by Fusarium Strains Infecting Weeds. Toxins. 2023 06; 15(7):. doi: 10.3390/toxins15070420. [PMID: 37505689]
  • Magdalena Gajęcka, Iwona Otrocka-Domagała, Paweł Brzuzan, Łukasz Zielonka, Michał Dąbrowski, Maciej T Gajęcki. Influence of deoxynivalenol and zearalenone on the immunohistochemical expression of oestrogen receptors and liver enzyme genes in vivo in prepubertal gilts. Archives of toxicology. 2023 Jun; ?(?):. doi: 10.1007/s00204-023-03502-7. [PMID: 37328583]
  • Bilal Murtaza, Xiaoyu Li, Liming Dong, Muhammad Kashif Saleemi, Mazhar Iqbal, Saima Majeed, Ashiq Ali, Gen Li, Bowen Jin, Lili Wang, Yongping Xu. In-vitro assessment of a novel plant rhizobacterium, Citrobacter freundii, for degrading and biocontrol of food mycotoxin deoxynivalenol. Toxicon : official journal of the International Society on Toxinology. 2023 May; 227(?):107095. doi: 10.1016/j.toxicon.2023.107095. [PMID: 36972839]
  • Irene Valenti, Francesco Tini, Milos Sevarika, Alessandro Agazzi, Giovanni Beccari, Ilaria Bellezza, Luisa Ederli, Silvia Grottelli, Matias Pasquali, Roberto Romani, Marco Saracchi, Lorenzo Covarelli. Impact of Enniatin and Deoxynivalenol Co-Occurrence on Plant, Microbial, Insect, Animal and Human Systems: Current Knowledge and Future Perspectives. Toxins. 2023 04; 15(4):. doi: 10.3390/toxins15040271. [PMID: 37104209]
  • Xu Yang, Tingyu Huang, Yunhe Chen, Fengjuan Chen, Yu Liu, Youshuang Wang, Wenxi Song, Juntao Zhang, Yibao Jiang, Fangyu Wang, Cong Zhang. Deoxynivalenol induces testicular ferroptosis by regulating the Nrf2/System Xc-/GPX4 axis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Mar; 175(?):113730. doi: 10.1016/j.fct.2023.113730. [PMID: 36925038]
  • Cristina Miguel-Rojas, Brad Cavinder, Jeffrey P Townsend, Frances Trail. Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio. 2023 02; 14(1):e0244222. doi: 10.1128/mbio.02442-22. [PMID: 36598191]
  • Wanderson Bucker Moraes, Laurence V Madden, Byung-Kee Baik, James Gillespie, Pierce A Paul. Environmental Conditions After Fusarium Head Blight Visual Symptom Development Affect Contamination of Wheat Grain with Deoxynivalenol and Deoxynivalenol-3-Glucoside. Phytopathology. 2023 Feb; 113(2):206-224. doi: 10.1094/phyto-06-22-0199-r. [PMID: 36131392]
  • Z A Chalyy, M G Kiseleva, I B Sedova, V A Tutelyan. [Mycotoxins in spices consumed in Russia]. Voprosy pitaniia. 2023; 92(2):26-34. doi: 10.33029/0042-8833-2023-92-2-26-34. [PMID: 37346017]
  • Rizky Pasthika Kirana, Kumar Gaurav, Sanu Arora, Gerlinde Wiesenberger, Maria Doppler, Sebastian Michel, Simone Zimmerl, Magdalena Matic, Chinedu E Eze, Mukesh Kumar, Ajla Topuz, Marc Lemmens, Rainer Schuhmacher, Gerhard Adam, Brande B H Wulff, Hermann Buerstmayr, Barbara Steiner. Identification of a UDP-glucosyltransferase conferring deoxynivalenol resistance in Aegilops tauschii and wheat. Plant biotechnology journal. 2023 01; 21(1):109-121. doi: 10.1111/pbi.13928. [PMID: 36121345]
  • Antoni Femenias, Polina Fomina, Valeria Tafintseva, Stephan Freitag, Volha Shapaval, Michael Sulyok, Boris Zimmermann, Sonia Marín, Rudolf Krska, Achim Kohler, Boris Mizaikoff. Optimizing extraction solvents for deoxynivalenol analysis in maize via infrared attenuated total reflection spectroscopy and chemometric methods. Analytical methods : advancing methods and applications. 2022 12; 15(1):36-47. doi: 10.1039/d2ay00995a. [PMID: 36448527]
  • Xiaoxiang Xu, Juan Chang, Ping Wang, Chaoqi Liu, Mengjie Liu, Ting Zhou, Qingqiang Yin, Guorong Yan. Glycyrrhizic Acid and Compound Probiotics Supplementation Alters the Intestinal Transcriptome and Microbiome of Weaned Piglets Exposed to Deoxynivalenol. Toxins. 2022 12; 14(12):. doi: 10.3390/toxins14120856. [PMID: 36548753]
  • Beibei Li, Jiaqi Duan, Jie Ren, Frédéric Francis, Guangyue Li. Isolation and Characterization of Two New Deoxynivalenol-Degrading Strains, Bacillus sp. HN117 and Bacillus sp. N22. Toxins. 2022 11; 14(11):. doi: 10.3390/toxins14110781. [PMID: 36356030]
  • Yuting Hu, Rui Hou, Zeyi Wang, Weiwei Zhang, Jin-Rong Xu. Nitrogen repression of deoxynivalenol biosynthesis is mediated by Mep2 ammonium permease in Fusarium graminearum. Environmental microbiology. 2022 11; 24(11):5392-5407. doi: 10.1111/1462-2920.16233. [PMID: 36200537]
  • Cintia Adácsi, Szilvia Kovács, István Pócsi, Tünde Pusztahelyi. Elimination of Deoxynivalenol, Aflatoxin B1, and Zearalenone by Gram-Positive Microbes (Firmicutes). Toxins. 2022 08; 14(9):. doi: 10.3390/toxins14090591. [PMID: 36136529]
  • Akos Mesterhazy, Balázs Szabó, Sándor Szél, Zoltán Nagy, Attila Berényi, Beata Tóth. Novel Insights into the Inheritance of Gibberella Ear Rot (GER), Deoxynivalenol (DON) Accumulation, and DON Production. Toxins. 2022 08; 14(9):. doi: 10.3390/toxins14090583. [PMID: 36136521]
  • Chaofeng Li, Chenglan Liu. Enantioselective effect of chiral fungicide prothioconazole on Fusarium graminearum: Fungicidal activity and DON biosynthesis. Environmental pollution (Barking, Essex : 1987). 2022 Aug; 307(?):119553. doi: 10.1016/j.envpol.2022.119553. [PMID: 35640724]
  • Jibo Li, Yongsong Bai, Kaidi Ma, Zhongshuai Ren, Jianping Li, Jing Zhang, Anshan Shan. Dihydroartemisinin alleviates deoxynivalenol induced liver apoptosis and inflammation in piglets. Ecotoxicology and environmental safety. 2022 Aug; 241(?):113811. doi: 10.1016/j.ecoenv.2022.113811. [PMID: 35772362]
  • Penggang Pei, Ke Xiong, Xiaoyi Wang, Baoguo Sun, Zhiyao Zhao, Xin Zhang, Jiabin Yu. Predictive growth kinetic parameters and modelled probabilities of deoxynivalenol production by Fusarium graminearum on wheat during simulated storing conditions. Journal of applied microbiology. 2022 Aug; 133(2):349-361. doi: 10.1111/jam.15557. [PMID: 35365897]
  • Ke Li, Dongmei Liu, Xin Pan, Shuwei Yan, Jiaqing Song, Dongwei Liu, Zhifang Wang, Yuan Xie, Junli Dai, Jihong Liu, Honglian Li, Xiaoting Zhang, Fei Gao. Deoxynivalenol Biosynthesis in Fusarium pseudograminearum Significantly Repressed by a Megabirnavirus. Toxins. 2022 07; 14(7):. doi: 10.3390/toxins14070503. [PMID: 35878241]
  • Valérie Nicaise, Sylvain Chereau, Laetitia Pinson-Gadais, Marie-Noelle Verdal-Bonnin, Christine Ducos, Mélanie Jimenez, Cécile Coriou, Sylvie Bussière, Thierry Robert, Christophe Nguyen, Florence Richard-Forget, Jean-Yves Cornu. Interaction between the Accumulation of Cadmium and Deoxynivalenol Mycotoxin Produced by Fusarium graminearum in Durum Wheat Grains. Journal of agricultural and food chemistry. 2022 Jul; 70(26):8085-8096. doi: 10.1021/acs.jafc.2c01673. [PMID: 35730681]
  • Simon Schiwek, Mohammad Alhussein, Charlotte Rodemann, Tuvshinjargal Budragchaa, Lukas Beule, Andreas von Tiedemann, Petr Karlovsky. Fusarium culmorum Produces NX-2 Toxin Simultaneously with Deoxynivalenol and 3-Acetyl-Deoxynivalenol or Nivalenol. Toxins. 2022 07; 14(7):. doi: 10.3390/toxins14070456. [PMID: 35878194]
  • Haifei Wang, Yajing Zhou, Chao Xu, Yue Cao, Yeyi Xiao, Demin Cai, Yoshinobu Uemoto, Shenglong Wu, Wenbin Bao. Genome-wide transcriptional profiling and functional analysis reveal miR-330-MAPK15 axis involving in cellular responses to deoxynivalenol exposure. Chemosphere. 2022 Jul; 298(?):134199. doi: 10.1016/j.chemosphere.2022.134199. [PMID: 35278444]
  • Alfia Khairullina, Nikos Tsardakas Renhuldt, Gerlinde Wiesenberger, Johan Bentzer, David B Collinge, Gerhard Adam, Leif Bülow. Identification and Functional Characterisation of Two Oat UDP-Glucosyltransferases Involved in Deoxynivalenol Detoxification. Toxins. 2022 06; 14(7):. doi: 10.3390/toxins14070446. [PMID: 35878183]
  • Xiu-Zhen Li, Yousef I Hassan, Dion Lepp, Yan Zhu, Ting Zhou. 3-keto-DON, but Not 3-epi-DON, Retains the in Planta Toxicological Potential after the Enzymatic Biotransformation of Deoxynivalenol. International journal of molecular sciences. 2022 Jun; 23(13):. doi: 10.3390/ijms23137230. [PMID: 35806249]
  • Massimo Blandino, Valentina Scarpino, Giulio Testa, Francesca Vanara, Amedeo Reyneri. The Effect of Foliar Fungicide and Insecticide Application on the Contamination of Fumonisins, Moniliformin and Deoxynivalenol in Maize Used for Food Purposes. Toxins. 2022 06; 14(7):. doi: 10.3390/toxins14070422. [PMID: 35878160]
  • Xinzhe Zhao, Peihao Sun, Mingxiao Liu, Shuanghang Liu, Lijun Huo, Zhiming Ding, Ming Liu, Shuai Wang, Ce Lv, Hanxiao Wu, Liguo Yang, Aixin Liang. Deoxynivalenol exposure inhibits biosynthesis of milk fat and protein by impairing tight junction in bovine mammary epithelial cells. Ecotoxicology and environmental safety. 2022 Jun; 237(?):113504. doi: 10.1016/j.ecoenv.2022.113504. [PMID: 35447471]
  • Jens C Meyer, Tim Birr, Inga Hennies, Detlev Wessels, Karin Schwarz. Reduction of deoxynivalenol, T-2 and HT-2 toxins and associated Fusarium species during commercial and laboratory de-hulling of milling oats. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2022 Jun; 39(6):1163-1183. doi: 10.1080/19440049.2022.2059576. [PMID: 35385360]
  • Lixin Zhang, Kewei Sun, Yiqing Li, Tianling Ma, Yu Zhang, Yanni Yin, Shuai Zhang, Wenyong Shao. The Importin FgPse1 Is Required for Vegetative Development, Virulence, and Deoxynivalenol Production by Interacting with the Nuclear Polyadenylated RNA-Binding Protein FgNab2 in Fusarium graminearum. Phytopathology. 2022 May; 112(5):1072-1080. doi: 10.1094/phyto-08-21-0357-r. [PMID: 34784736]
  • Asmaa Abbas, Tapani Yli-Mattila. Biocontrol of Fusarium graminearum, a Causal Agent of Fusarium Head Blight of Wheat, and Deoxynivalenol Accumulation: From In Vitro to In Planta. Toxins. 2022 04; 14(5):. doi: 10.3390/toxins14050299. [PMID: 35622546]
  • Marcin Bryła, Sylwia Stępniewska, Marta Modrzewska, Agnieszka Waśkiewicz, Grażyna Podolska, Edyta Ksieniewicz-Woźniak, Tomoya Yoshinari, Łukasz Stępień, Monika Urbaniak, Marek Roszko, Romuald Gwiazdowski, Joanna Kanabus, Adam Pierzgalski. Dynamics of Deoxynivalenol and Nivalenol Glucosylation in Wheat Cultivars Infected with Fusarium culmorum in Field Conditions─A 3 Year Study (2018-2020). Journal of agricultural and food chemistry. 2022 Apr; 70(14):4291-4302. doi: 10.1021/acs.jafc.2c00314. [PMID: 35362967]
  • Kaidi Ma, Yongsong Bai, Jibo Li, Zhongshuai Ren, Jianping Li, Jing Zhang, Anshan Shan. Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets. Food & function. 2022 Apr; 13(7):3905-3916. doi: 10.1039/d2fo00185c. [PMID: 35285834]
  • Yanping Liu, Yuyang Chen, Wenjuan Xu, Dan Song, Xiangzhi Han, Feng Long. Rapid, Sensitive On-Site Detection of Deoxynivalenol in Cereals Using Portable and Reusable Evanescent Wave Optofluidic Immunosensor. International journal of environmental research and public health. 2022 03; 19(7):. doi: 10.3390/ijerph19073759. [PMID: 35409443]
  • Junxiong Wang, Kexin Zheng, Yongcheng Jin, Yurong Fu, Rui Wang, Jing Zhang. Protective Effects of Taraxasterol against Deoxynivalenol-Induced Damage to Bovine Mammary Epithelial Cells. Toxins. 2022 03; 14(3):. doi: 10.3390/toxins14030211. [PMID: 35324708]
  • Rupesh Gaire, Marcio Pais de Arruda, Mohsen Mohammadi, Gina Brown-Guedira, Frederic L Kolb, Jessica Rutkoski. Multi-trait genomic selection can increase selection accuracy for deoxynivalenol accumulation resulting from fusarium head blight in wheat. The plant genome. 2022 03; 15(1):e20188. doi: 10.1002/tpg2.20188. [PMID: 35043582]
  • Qian Lu, Jiao-Yang Luo, Hao-Nan Ruan, Chang-Jian Wang, Mei-Hua Yang. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. The Science of the total environment. 2022 Feb; 806(Pt 3):151192. doi: 10.1016/j.scitotenv.2021.151192. [PMID: 34710421]
  • Jéssica Cristina Zoratto Romoli, Milena Veronezi Silva, Giseli Cristina Pante, Danielle Hoeltgebaum, Juliana Cristina Castro, Gustavo Henrique Oliveira da Rocha, Isis Regina Grenier Capoci, Samuel Botião Nerilo, Simone Aparecida Galerani Mossini, Eduardo Micotti da Gloria, Terezinha Inez Estivalet Svidzinski, Jane Martha Graton Mikcha, Miguel Machinski. Anti-mycotoxigenic and antifungal activity of ginger, turmeric, thyme and rosemary essential oils in deoxynivalenol (DON) and zearalenone (ZEA) producing Fusarium graminearum. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2022 Feb; 39(2):362-372. doi: 10.1080/19440049.2021.1996636. [PMID: 34854801]
  • Ehsan Feizollahi, M S Roopesh. Mechanisms of deoxynivalenol (DON) degradation during different treatments: a review. Critical reviews in food science and nutrition. 2022; 62(21):5903-5924. doi: 10.1080/10408398.2021.1895056. [PMID: 33729830]
  • Hannah Reed, Brian Mueller, Carol L Groves, Damon L Smith. Presence and Correlation of Fusarium graminearum and Deoxynivalenol Accumulation in Silage Corn Plant Parts. Plant disease. 2022 Jan; 106(1):87-92. doi: 10.1094/pdis-03-21-0641-re. [PMID: 34491093]
  • Paul Gerard Bruinenberg, Mathieu Castex. Evaluation of a Yeast Hydrolysate from a Novel Strain of Saccharomyces cerevisiae for Mycotoxin Mitigation using In Vitro and In Vivo Models. Toxins. 2021 12; 14(1):. doi: 10.3390/toxins14010007. [PMID: 35050984]
  • Yi Lou, Jing Zhang, Guanghui Wang, Wenqin Fang, Shumin Wang, Yakubu Saddeeq Abubakar, Jie Zhou, Zonghua Wang, Wenhui Zheng. Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum. mBio. 2021 12; 12(6):e0232421. doi: 10.1128/mbio.02324-21. [PMID: 34933449]
  • Edyta Ksieniewicz-Woźniak, Marcin Bryła, Dorota Michałowska, Agnieszka Waśkiewicz, Tomoya Yoshinari. Transformation of Selected Fusarium Toxins and Their Masked Forms during Malting of Various Cultivars of Wheat. Toxins. 2021 12; 13(12):. doi: 10.3390/toxins13120866. [PMID: 34941704]
  • Barbara Novak, Amanda Lopes Hasuda, Mahdi Ghanbari, Viviane Mayumi Maruo, Ana Paula F R L Bracarense, Manon Neves, Caroline Emsenhuber, Silvia Wein, Isabelle P Oswald, Philippe Pinton, Dian Schatzmayr. Effects of Fusarium metabolites beauvericin and enniatins alone or in mixture with deoxynivalenol on weaning piglets. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Dec; 158(?):112719. doi: 10.1016/j.fct.2021.112719. [PMID: 34843867]
  • Gunnar Sundstøl Eriksen, Helle K Knutsen, Morten Sandvik, Anne-Lise Brantsæter. Urinary deoxynivalenol as a biomarker of exposure in different age, life stage and dietary practice population groups. Environment international. 2021 12; 157(?):106804. doi: 10.1016/j.envint.2021.106804. [PMID: 34352564]
  • Felipe Dalla Lana, Laurence V Madden, Pierce A Paul. Logistic Models Derived via LASSO Methods for Quantifying the Risk of Natural Contamination of Maize Grain with Deoxynivalenol. Phytopathology. 2021 Dec; 111(12):2250-2267. doi: 10.1094/phyto-03-21-0104-r. [PMID: 34009008]
  • Yi Ding, Donald M Gardiner, Jonathan J Powell, Michelle L Colgrave, Robert F Park, Kemal Kazan. Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. Plant, cell & environment. 2021 12; 44(12):3526-3544. doi: 10.1111/pce.14195. [PMID: 34591319]
  • Fuchang Li, Libo Huang, Quancheng Liu, Pengwei Wang, Hongju Chen, Chunyang Wang. Different metabolites induced by deoxynivalenol in the serum and urine of weaned rabbits detected using LC-MS-based metabolomics. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2021 Dec; 250(?):109184. doi: 10.1016/j.cbpc.2021.109184. [PMID: 34500088]
  • Min Tang, Daixiu Yuan, Peng Liao. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets. Environmental pollution (Barking, Essex : 1987). 2021 Nov; 289(?):117865. doi: 10.1016/j.envpol.2021.117865. [PMID: 34358871]
  • Maia Segura-Wang, Bertrand Grenier, Suzana Ilic, Ursula Ruczizka, Maximiliane Dippel, Moritz Bünger, Matthias Hackl, Veronika Nagl. MicroRNA Expression Profiling in Porcine Liver, Jejunum and Serum upon Dietary DON Exposure Reveals Candidate Toxicity Biomarkers. International journal of molecular sciences. 2021 Nov; 22(21):. doi: 10.3390/ijms222112043. [PMID: 34769473]
  • Xuefeng Fan, Zhen Yan, Meixin Yang, Cees Waalwijk, Theo van der Lee, Anne van Diepeningen, Balazs Brankovics, Wanquan Chen, Jie Feng, Hao Zhang. Contamination and Translocation of Deoxynivalenol and Its Derivatives Associated with Fusarium Crown Rot of Wheat in Northern China. Plant disease. 2021 Nov; 105(11):3397-3406. doi: 10.1094/pdis-03-21-0612-re. [PMID: 33944574]
  • Song Shan Wang, Hua Cui, Meng Ze Chen, Li Li, Yu Wu, Song Xue Wang. Simultaneous quantitation of 3ADON and 15ADON chemotypes of DON-producing Fusarium species in Chinese wheat based on duplex droplet digital PCR assay. Journal of microbiological methods. 2021 11; 190(?):106319. doi: 10.1016/j.mimet.2021.106319. [PMID: 34480973]
  • Safa Oufensou, Alessandro Dessì, Roberto Dallocchio, Virgilio Balmas, Emanuela Azara, Paola Carta, Quirico Migheli, Giovanna Delogu. Molecular Docking and Comparative Inhibitory Efficacy of Naturally Occurring Compounds on Vegetative Growth and Deoxynivalenol Biosynthesis in Fusarium culmorum. Toxins. 2021 10; 13(11):. doi: 10.3390/toxins13110759. [PMID: 34822543]
  • Agnieszka Tkaczyk, Piotr Jedziniak, Łukasz Zielonka, Michał Dąbrowski, Piotr Ochodzki, Adrianna Rudawska. Biomarkers of Deoxynivalenol, Citrinin, Ochratoxin A and Zearalenone in Pigs after Exposure to Naturally Contaminated Feed Close to Guidance Values. Toxins. 2021 10; 13(11):. doi: 10.3390/toxins13110750. [PMID: 34822534]
  • Katarzyna Marzec-Schmidt, Thomas Börjesson, Skaidre Suproniene, Małgorzata Jędryczka, Sigita Janavičienė, Tomasz Góral, Ida Karlsson, Yuliia Kochiieru, Piotr Ochodzki, Audronė Mankevičienė, Kristin Piikki. Modelling the Effects of Weather Conditions on Cereal Grain Contamination with Deoxynivalenol in the Baltic Sea Region. Toxins. 2021 10; 13(11):. doi: 10.3390/toxins13110737. [PMID: 34822522]
  • Shizhuang Weng, Xujin Hu, Wenxiu Zhu, Pan Li, Shouguo Zheng, Ling Zheng, Linsheng Huang, Dongyan Zhang. Surface-enhanced Raman spectroscopywith gold nanorods modified by sodium citrate and liquid-liquid interface self-extraction for detection of deoxynivalenol in Fusarium head blight-infected wheat kernels coupled with a fully convolution network. Food chemistry. 2021 Oct; 359(?):129847. doi: 10.1016/j.foodchem.2021.129847. [PMID: 33964656]
  • Luisa Ederli, Giovanni Beccari, Francesco Tini, Irene Bergamini, Ilaria Bellezza, Roberto Romani, Lorenzo Covarelli. Enniatin B and Deoxynivalenol Activity on Bread Wheat and on Fusarium Species Development. Toxins. 2021 10; 13(10):. doi: 10.3390/toxins13100728. [PMID: 34679021]
  • Weitao Fu, Ercheng Wang, Di Ke, Hao Yang, Lingfeng Chen, Jingjing Shao, Xueping Hu, Lei Xu, Na Liu, Tingjun Hou. Discovery of a Novel Fusarium Graminearum Mitogen-Activated Protein Kinase (FgGpmk1) Inhibitor for the Treatment of Fusarium Head Blight. Journal of medicinal chemistry. 2021 09; 64(18):13841-13852. doi: 10.1021/acs.jmedchem.1c01227. [PMID: 34519507]
  • Annick D van den Brand, Rudolf Hoogenveen, Marcel J B Mengelers, Marco Zeilmaker, Gunnar S Eriksen, Silvio Uhlig, Anne Lise Brantsæter, Hubert A A M Dirven, Trine Husøy. Modelling the Renal Excretion of the Mycotoxin Deoxynivalenol in Humans in an Everyday Situation. Toxins. 2021 09; 13(10):. doi: 10.3390/toxins13100675. [PMID: 34678968]
  • Zongzhe He, Jing Zhang, Dongya Shi, Beibei Gao, Zhen Wang, Yanqing Zhang, Minghua Wang. Deoxynivalenol in Fusarium graminearum: Evaluation of Cyproconazole Stereoisomers In Vitro and In Planta. Journal of agricultural and food chemistry. 2021 Sep; 69(34):9735-9742. doi: 10.1021/acs.jafc.1c02555. [PMID: 34427095]
  • Luca Lo Verso, Kristina Dumont, Martin Lessard, Karoline Lauzon, Chantale Provost, Carl A Gagnon, Younes Chorfi, Frédéric Guay. The administration of diets contaminated with low to intermediate doses of deoxynivalenol and supplemented with antioxidants and binding agents slightly affects the growth, antioxidant status, and vaccine response in weanling pigs. Journal of animal science. 2021 Sep; 99(9):. doi: 10.1093/jas/skab238. [PMID: 34406414]
  • Thomas Miedaner, Andrea Vasquez, Valheria Castiblanco, Hilda Elena Castillo, Nora Foroud, Tobias Würschum, Willmar Leiser. Genome-wide association study for deoxynivalenol production and aggressiveness in wheat and rye head blight by resequencing 92 isolates of Fusarium culmorum. BMC genomics. 2021 Aug; 22(1):630. doi: 10.1186/s12864-021-07931-5. [PMID: 34461830]
  • Ilse Vanhoutte, Caroline De Tender, Kristel Demeyere, Mohamed F Abdallah, Sarah Ommeslag, Pieter Vermeir, Sarah De Saeger, Jane Debode, Evelyne Meyer, Siska Croubels, Kris Audenaert, Leen De Gelder. Bacterial Enrichment Cultures Biotransform the Mycotoxin Deoxynivalenol into a Novel Metabolite Toxic to Plant and Porcine Cells. Toxins. 2021 08; 13(8):. doi: 10.3390/toxins13080552. [PMID: 34437423]
  • Tayebe Azizi, Mohsen Daneshyar, Manoochehr Allymehr, Ali Shalizar Jalali, Hamed Khalilvandi Behroozyar, Amir Tukmechi. The impact of deoxynivalenol contaminated diet on performance, immune response, intestine morphology and jejunal gene expression in broiler chicken. Toxicon : official journal of the International Society on Toxinology. 2021 Aug; 199(?):72-78. doi: 10.1016/j.toxicon.2021.06.001. [PMID: 34111455]
  • Friederike Meyer-Wolfarth, Elisabeth Oldenburg, Torsten Meiners, Katherine Muñoz, Stefan Schrader. Effects of temperature and soil fauna on the reduction and leaching of deoxynivalenol and zearalenone from Fusarium graminearum-infected maize stubbles. Mycotoxin research. 2021 Aug; 37(3):249-263. doi: 10.1007/s12550-021-00434-y. [PMID: 34173210]
  • Dionisia Carballo, Noelia Pallarés, Emilia Ferrer, Francisco J Barba, Houda Berrada. Assessment of Human Exposure to Deoxynivalenol, Ochratoxin A, Zearalenone and Their Metabolites Biomarker in Urine Samples Using LC-ESI-qTOF. Toxins. 2021 07; 13(8):. doi: 10.3390/toxins13080530. [PMID: 34437401]
  • Jianming Yue, Dawei Guo, Xiuge Gao, Jiacai Wang, Eugenie Nepovimova, Wenda Wu, Kamil Kuca. Deoxynivalenol (Vomitoxin)-Induced Anorexia Is Induced by the Release of Intestinal Hormones in Mice. Toxins. 2021 07; 13(8):. doi: 10.3390/toxins13080512. [PMID: 34437383]
  • Melanie A Rehder Silinski, Jennifer A Gilliam, Reshan A Fernando, Veronica G Robinson, Dori Germolec, Helen Cunny, Madelyn C Huang, Johnathan Furr, Suramya Waidyanatha. Development of an Analytical Method for Quantitation of Deoxynivalenol by UPLC-MS-MS: A Preliminary Assessment of Gestational and Lactational Transfer in Rats. Journal of analytical toxicology. 2021 Jul; 45(6):566-572. doi: 10.1093/jat/bkaa119. [PMID: 32886793]
  • Chuanhong Bian, Yabing Duan, Qian Xiu, Jueyu Wang, Xian Tao, Mingguo Zhou. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum. Molecular plant pathology. 2021 07; 22(7):769-785. doi: 10.1111/mpp.13060. [PMID: 33934484]
  • Omeralfaroug Ali, Miklós Mézes, Krisztián Balogh, Melinda Kovács, András Szabó. The Effects of Mixed Fusarium Mycotoxins at EU-Permitted Feed Levels on Weaned Piglets' Tissue Lipids. Toxins. 2021 06; 13(7):. doi: 10.3390/toxins13070444. [PMID: 34199083]
  • Debora Muratori Holanda, Young Ihn Kim, Wanpuech Parnsen, Sung Woo Kim. Phytobiotics with Adsorbent to Mitigate Toxicity of Multiple Mycotoxins on Health and Growth of Pigs. Toxins. 2021 06; 13(7):. doi: 10.3390/toxins13070442. [PMID: 34206784]
  • Darika Awapak, Awanwee Petchkongkaew, Michael Sulyok, Rudolf Krska. Co-occurrence and toxicological relevance of secondary metabolites in dairy cow feed from Thailand. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2021 Jun; 38(6):1013-1027. doi: 10.1080/19440049.2021.1905186. [PMID: 33861173]