Epalrestat (BioDeep_00000399026)

   

natural product


代谢物信息卡片


Epalrestat

化学式: C15H13NO3S2 (319.0336828)
中文名称: 依帕司他
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC=CC(=C1)/C=C(/C=C2\SC(N(C2=O)CC(O)=O)=S)C
InChI: InChI=1S/C15H13NO3S2/c1-10(7-11-5-3-2-4-6-11)8-12-14(19)16(9-13(17)18)15(20)21-12/h2-8H,9H2,1H3,(H,17,18)/b10-7+,12-8-

描述信息

C471 - Enzyme Inhibitor > C72880 - Aldose Reductase Inhibitor
D004791 - Enzyme Inhibitors

同义名列表

1 个代谢物同义名

Epalrestat



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Wei Shi, Guang Xu, Yuan Gao, Jun Zhao, Tingting Liu, Jia Zhao, Huijie Yang, Ziying Wei, Hui Li, An-Long Xu, Zhaofang Bai, Xiaohe Xiao. Novel role for epalrestat: protecting against NLRP3 inflammasome-driven NASH by targeting aldose reductase. Journal of translational medicine. 2023 10; 21(1):700. doi: 10.1186/s12967-023-04380-4. [PMID: 37805545]
  • Tongshuai Zhang, Jinrong Wu, Xinmin Yao, Yao Zhang, Yue Wang, Yang Han, Yun Wu, Zhenyu Xu, Jing Lan, Siyu Han, Haifeng Zou, Qixu Sun, Dandan Wang, Jingyu Zhang, Guangyou Wang. The Aldose Reductase Inhibitor Epalrestat Maintains Blood-Brain Barrier Integrity by Enhancing Endothelial Cell Function during Cerebral Ischemia. Molecular neurobiology. 2023 Mar; ?(?):. doi: 10.1007/s12035-023-03304-z. [PMID: 36940077]
  • Xiaonan Zhang, Long Xu, Huan Chen, Xin Zhang, Yanqi Lei, Wenchao Liu, Hulin Xu, Bing Ma, Changjin Zhu. Novel Hydroxychalcone-Based Dual Inhibitors of Aldose Reductase and α-Glucosidase as Potential Therapeutic Agents against Diabetes Mellitus and Its Complications. Journal of medicinal chemistry. 2022 07; 65(13):9174-9192. doi: 10.1021/acs.jmedchem.2c00380. [PMID: 35749671]
  • Vishal Kumar Vishwakarma, Shravan Kumar Paswan, Taruna Arora, Rahul Kumar Verma, Harlokesh Narayan Yadav. Pain Allaying Epalrestat-Loaded Lipid Nanoformulation for the Diabetic Neuropathic Pain Interventions: Design, Development, and Animal Study. Current drug metabolism. 2022; 23(7):571-583. doi: 10.2174/1389200223666220810152633. [PMID: 35950248]
  • Anna N Ligezka, Silvia Radenkovic, Mayank Saraswat, Kishore Garapati, Wasantha Ranatunga, Wirginia Krzysciak, Hitoshi Yanaihara, Graeme Preston, William Brucker, Renee M McGovern, Joel M Reid, David Cassiman, Karthik Muthusamy, Christin Johnsen, Saadet Mercimek-Andrews, Austin Larson, Christina Lam, Andrew C Edmondson, Bart Ghesquière, Peter Witters, Kimiyo Raymond, Devin Oglesbee, Akhilesh Pandey, Ethan O Perlstein, Tamas Kozicz, Eva Morava. Sorbitol Is a Severity Biomarker for PMM2-CDG with Therapeutic Implications. Annals of neurology. 2021 12; 90(6):887-900. doi: 10.1002/ana.26245. [PMID: 34652821]
  • Sivakumar Lingappa, Muthugounder Subramanian Shivakumar, Thamilarasan Manivasagam, Somasundaram Thirugnanasambandan Somasundaram, Palaniappan Seedevi. Neuroprotective Effect of Epalrestat on Hydrogen Peroxide-Induced Neurodegeneration in SH-SY5Y Cellular Model. Journal of microbiology and biotechnology. 2021 Jun; 31(6):867-874. doi: 10.4014/jmb.2101.01002. [PMID: 33820886]
  • Zubeyir Elmazoglu, Marta Soltesova Prnova, Milan Stefek, Asli F Ceylan, Michael Aschner, Edgar Rangel-López, Abel Santamaria, Cimen Karasu. Protective Effects of Novel Substituted Triazinoindole Inhibitors of Aldose Reductase and Epalrestat in Neuron-like PC12 Cells and BV2 Rodent Microglial Cells Exposed to Toxic Models of Oxidative Stress: Comparison with the Pyridoindole Antioxidant Stobadine. Neurotoxicity research. 2021 Jun; 39(3):588-597. doi: 10.1007/s12640-021-00349-7. [PMID: 33713301]
  • Xin Zhang, Huan Chen, Yanqi Lei, Xiaonan Zhang, Long Xu, Wenchao Liu, Zhenya Fan, Zequn Ma, Zhechang Yin, Lingyun Li, Changjin Zhu, Bing Ma. Multifunctional agents based on benzoxazolone as promising therapeutic drugs for diabetic nephropathy. European journal of medicinal chemistry. 2021 Apr; 215(?):113269. doi: 10.1016/j.ejmech.2021.113269. [PMID: 33588177]
  • Shalki Choudhary, Manoj Kumar, Om Silakari. QM/MM analysis, synthesis and biological evaluation of epalrestat based mutual-prodrugs for diabetic neuropathy and nephropathy. Bioorganic chemistry. 2021 03; 108(?):104556. doi: 10.1016/j.bioorg.2020.104556. [PMID: 33376013]
  • Keisuke Sato, Ryosuke Tatsunami, Koji Wakame. Epalrestat suppresses inflammatory response in lipopolysaccharide-stimulated RAW264.7 cells. Allergologia et immunopathologia. 2021; 49(5):1-8. doi: 10.15586/aei.v49i5.102. [PMID: 34476915]
  • Zunaira Alvi, Muhammad Akhtar, Arshad Mahmood, Nisar Ur-Rahman, Imran Nazir, Hadia Sadaquat, Muhammad Ijaz, Shahzada Khurram Syed, Muhammad Khurram Waqas, Yi Wang. Enhanced Oral Bioavailability of Epalrestat SBE7-β-CD Complex Loaded Chitosan Nanoparticles: Preparation, Characterization and in-vivo Pharmacokinetic Evaluation. International journal of nanomedicine. 2021; 16(?):8353-8373. doi: 10.2147/ijn.s339857. [PMID: 35002232]
  • Yanni Zhu, Yanjuan Sheng. RETRACTED: Sustained delivery of epalrestat to the retina using PEGylated solid lipid nanoparticles laden contact lens. International journal of pharmaceutics. 2020 09; 587(?):119688. doi: 10.1016/j.ijpharm.2020.119688. [PMID: 32717281]
  • Ryosuke Tatsunami, Yu Murao, Keisuke Sato. [Protective Effect of Epalrestat against Oxidative Stress-induced Cytotoxicity]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2020; 140(11):1381-1388. doi: 10.1248/yakushi.20-00167. [PMID: 33132274]
  • Sangeetha Iyer, Feba S Sam, Nina DiPrimio, Graeme Preston, Jan Verheijen, Kausalya Murthy, Zachary Parton, Hillary Tsang, Jessica Lao, Eva Morava, Ethan O Perlstein. Repurposing the aldose reductase inhibitor and diabetic neuropathy drug epalrestat for the congenital disorder of glycosylation PMM2-CDG. Disease models & mechanisms. 2019 11; 12(11):. doi: 10.1242/dmm.040584. [PMID: 31636082]
  • Zafar Iqbal, Grant Morahan, Mahreen Arooj, Alexandre N Sobolev, Shahid Hameed. Synthesis of new arylsulfonylspiroimidazolidine-2',4'-diones and study of their effect on stimulation of insulin release from MIN6 cell line, inhibition of human aldose reductase, sorbitol accumulations in various tissues and oxidative stress. European journal of medicinal chemistry. 2019 Apr; 168(?):154-175. doi: 10.1016/j.ejmech.2019.02.036. [PMID: 30818176]
  • Yunpeng Ji, Xin Chen, Huan Chen, Xin Zhang, Zhenya Fan, Lina Xie, Bing Ma, Changjin Zhu. Designing of acyl sulphonamide based quinoxalinones as multifunctional aldose reductase inhibitors. Bioorganic & medicinal chemistry. 2019 04; 27(8):1658-1669. doi: 10.1016/j.bmc.2019.03.015. [PMID: 30858026]
  • Bai-Bing Yang, Zhi-Wei Hong, Zheng Zhang, Wen Yu, Tao Song, Lei-Lei Zhu, He-Song Jiang, Guo-Tao Chen, Yun Chen, Yu-Tian Dai. Epalrestat, an Aldose Reductase Inhibitor, Restores Erectile Function in Streptozocin-induced Diabetic Rats. International journal of impotence research. 2019 Mar; 31(2):97-104. doi: 10.1038/s41443-018-0075-x. [PMID: 30214006]
  • Jun He, Hao-Xue Gao, Na Yang, Xiao-Dong Zhu, Run-Bin Sun, Yuan Xie, Cai-Hong Zeng, Jing-Wei Zhang, Jian-Kun Wang, Fei Ding, Ji-Ye Aa, Guang-Ji Wang. The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta pharmacologica Sinica. 2019 Jan; 40(1):86-97. doi: 10.1038/s41401-018-0043-5. [PMID: 29930278]
  • Yun-Xing Gao, Juan Tang, Qian Zhang, Li-Li Jiang, Xian-Wei Li. [Interventional effect of epalrestat on renal interstitial fibrosis in unilateral ureteral obstruction rats and its mechanism]. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology. 2019 Jan; 35(1):79-84. doi: 10.12047/j.cjap.5735.2019.019. [PMID: 31245958]
  • Satoshi Yamaori, Noriyuki Araki, Mio Shionoiri, Kurumi Ikehata, Shinobu Kamijo, Shigeru Ohmori, Kazuhito Watanabe. A Specific Probe Substrate for Evaluation of CYP4A11 Activity in Human Tissue Microsomes and a Highly Selective CYP4A11 Inhibitor: Luciferin-4A and Epalrestat. The Journal of pharmacology and experimental therapeutics. 2018 09; 366(3):446-457. doi: 10.1124/jpet.118.249557. [PMID: 29976573]
  • Xiaotong Wang, Haixiong Lin, Shuai Xu, Yuanlin Jin, Ren Zhang. The clinical efficacy of epalrestat combined with α-lipoic acid in diabetic peripheral neuropathy: Protocol for a systematic review and meta-analysis. Medicine. 2018 Feb; 97(6):e9828. doi: 10.1097/md.0000000000009828. [PMID: 29419686]
  • Xiaotong Wang, Haixiong Lin, Shuai Xu, Yuanlin Jin, Ren Zhang. Alpha lipoic acid combined with epalrestat: a therapeutic option for patients with diabetic peripheral neuropathy. Drug design, development and therapy. 2018; 12(?):2827-2840. doi: 10.2147/dddt.s168878. [PMID: 30233145]
  • Zhi-Ming Xiu, Li-Ping Wang, Jun Fu, Jia Xu, Li Liu. 1-Acetyl-5-phenyl-1H-pyrrol-3-ylacetate: An aldose reductase inhibitor for the treatment of diabetic nephropathy. Bioorganic & medicinal chemistry letters. 2017 09; 27(18):4482-4487. doi: 10.1016/j.bmcl.2017.08.002. [PMID: 28802633]
  • Jingqiu Huang, Runbin Sun, Siqi Feng, Jun He, Fei Fei, Haoxue Gao, Yuqing Zhao, Yue Zhang, Huilin Gu, Jiye Aa, Guangji Wang. Sensitive analysis and pharmacokinetic study of epalrestat in C57BL/6J mice. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Jun; 1055-1056(?):98-103. doi: 10.1016/j.jchromb.2017.03.040. [PMID: 28445852]
  • Hong Sun, Yunhai Bo, Mingjie Zhang, Xiao Wu, Mingyang Zhou, Longshan Zhao, Zhili Xiong. Simultaneous determination of epalrestat and puerarin in rat plasma by UHPLC-MS/MS: Application to their pharmacokinetic interaction study. Biomedical chromatography : BMC. 2017 Apr; 31(4):. doi: 10.1002/bmc.3855. [PMID: 27650591]
  • Zhiyong Huang, Quan Hong, Xueguang Zhang, Wenzhen Xiao, Liyuan Wang, Shaoyuan Cui, Zhe Feng, Yang Lv, Guangyan Cai, Xiangmei Chen, Di Wu. Aldose reductase mediates endothelial cell dysfunction induced by high uric acid concentrations. Cell communication and signaling : CCS. 2017 01; 15(1):3. doi: 10.1186/s12964-016-0158-6. [PMID: 28057038]
  • Heba El Gamal, Ali Hussein Eid, Shankar Munusamy. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. BioMed research international. 2017; 2017(?):5903105. doi: 10.1155/2017/5903105. [PMID: 28386557]
  • Kaori Yama, Keisuke Sato, Yu Murao, Ryosuke Tatsunami, Yoshiko Tampo. Epalrestat Upregulates Heme Oxygenase-1, Superoxide Dismutase, and Catalase in Cells of the Nervous System. Biological & pharmaceutical bulletin. 2016 Sep; 39(9):1523-30. doi: 10.1248/bpb.b16-00332. [PMID: 27439473]
  • Yingang Zou, Xiangyu Qin, Xin Hao, Wei Zhang, Shaoqi Yang, Yanchun Yang, Zhongfei Han, Bing Ma, Changjin Zhu. Phenolic 4-hydroxy and 3,5-dihydroxy derivatives of 3-phenoxyquinoxalin-2(1H)-one as potent aldose reductase inhibitors with antioxidant activity. Bioorganic & medicinal chemistry letters. 2015 Sep; 25(18):3924-7. doi: 10.1016/j.bmcl.2015.07.048. [PMID: 26227780]
  • Xiangyu Qin, Xin Hao, Hui Han, Shaojuan Zhu, Yanchun Yang, Bobin Wu, Saghir Hussain, Shagufta Parveen, Chaojun Jing, Bing Ma, Changjin Zhu. Design and synthesis of potent and multifunctional aldose reductase inhibitors based on quinoxalinones. Journal of medicinal chemistry. 2015 Feb; 58(3):1254-67. doi: 10.1021/jm501484b. [PMID: 25602762]
  • Kaori Yama, Keisuke Sato, Natsuki Abe, Yu Murao, Ryosuke Tatsunami, Yoshiko Tampo. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells. Redox biology. 2015; 4(?):87-96. doi: 10.1016/j.redox.2014.12.002. [PMID: 25529839]
  • Shi-Hong Wen, Yi-Hong Ling, Yi Li, Cai Li, Jia-Xin Liu, Yun-Sheng Li, Xi Yao, Zhi-Qiu Xia, Ke-Xuan Liu. Ischemic postconditioning during reperfusion attenuates oxidative stress and intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion via aldose reductase. Surgery. 2013 Apr; 153(4):555-64. doi: 10.1016/j.surg.2012.09.017. [PMID: 23218881]
  • Ramakrishna Nirogi, Vishwottam Kandikere, Devender Reddy Ajjala, Gopinadh Bhyrapuneni, Nageswara Rao Muddana. LC-MS/MS method for the quantification of aldose reductase inhibitor-epalrestat and application to pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2013 Feb; 74(?):227-34. doi: 10.1016/j.jpba.2012.10.020. [PMID: 23245255]
  • Zhen-Yu Li, Juan Gu, Jin Yan, Jun-Jie Wang, Wei-Hua Huang, Zhi-Rong Tan, Gan Zhou, Yao Chen, Hong-Hao Zhou, Dong-Sheng Ouyang. Hypertensive cardiac remodeling effects of lignan extracts from Eucommia ulmoides Oliv. bark--a famous traditional Chinese medicine. The American journal of Chinese medicine. 2013; 41(4):801-15. doi: 10.1142/s0192415x13500547. [PMID: 23895153]
  • Keisuke Sato, Kaori Yama, Yu Murao, Ryosuke Tatsunami, Yoshiko Tampo. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation. Redox biology. 2013; 2(?):15-21. doi: 10.1016/j.redox.2013.11.003. [PMID: 24363998]
  • Jun Lee, Yun Mi Lee, Byong Won Lee, Joo-Hwan Kim, Jin Sook Kim. Chemical constituents from the aerial parts of Aster koraiensis with protein glycation and aldose reductase inhibitory activities. Journal of natural products. 2012 Feb; 75(2):267-70. doi: 10.1021/np200646e. [PMID: 22264115]
  • Toshio Morikawa, Saowanee Chaipech, Hisashi Matsuda, Makoto Hamao, Yohei Umeda, Hiroki Sato, Haruka Tamura, Haruka Kon'i, Kiyofumi Ninomiya, Masayuki Yoshikawa, Yutana Pongpiriyadacha, Takao Hayakawa, Osamu Muraoka. Antidiabetogenic oligostilbenoids and 3-ethyl-4-phenyl-3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorganic & medicinal chemistry. 2012 Jan; 20(2):832-40. doi: 10.1016/j.bmc.2011.11.067. [PMID: 22209731]
  • Yasuto Kido, Pär Matsson, Kathleen M Giacomini. Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. Journal of medicinal chemistry. 2011 Jul; 54(13):4548-58. doi: 10.1021/jm2001629. [PMID: 21599003]
  • Juan Gu, Jun-Jie Wang, Jin Yan, Chang-Fu Cui, Wei-Hua Wu, Ling Li, Zhen-Shan Wang, Min Yu, Na Gao, Li Liu, Dong-Sheng Ouyang. Effects of lignans extracted from Eucommia ulmoides and aldose reductase inhibitor epalrestat on hypertensive vascular remodeling. Journal of ethnopharmacology. 2011 Jan; 133(1):6-13. doi: 10.1016/j.jep.2010.08.055. [PMID: 20817083]
  • Toshihide Kawai, Izumi Takei, Mikiya Tokui, Osamu Funae, Kazunori Miyamoto, Mitsuhisa Tabata, Takumi Hirata, Takao Saruta, Akira Shimada, Hiroshi Itoh. Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of N(ɛ)-carboxymethyl lysine. Journal of diabetes and its complications. 2010 Nov; 24(6):424-32. doi: 10.1016/j.jdiacomp.2008.10.005. [PMID: 19716319]
  • Juan Gu, Jin Yan, Weihua Wu, Qi Huang, Dongsheng Ouyang. [Research progress in aldose reductase]. Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences. 2010 Apr; 35(4):395-400. doi: 10.3969/j.issn.1672-7347.2010.04.021. [PMID: 20448367]
  • Chun Wang, Ruilan Yan, Dixian Luo, Kounosuke Watabe, Duan-Fang Liao, Deliang Cao. Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. The Journal of biological chemistry. 2009 Sep; 284(39):26742-8. doi: 10.1074/jbc.m109.022897. [PMID: 19643728]
  • Chie Ohmura, Hirotaka Watada, Kosuke Azuma, Tomoaki Shimizu, Akio Kanazawa, Fuki Ikeda, Tomoaki Yoshihara, Yoshio Fujitani, Takahisa Hirose, Yasushi Tanaka, Ryuzo Kawamori. Aldose reductase inhibitor, epalrestat, reduces lipid hydroperoxides in type 2 diabetes. Endocrine journal. 2009; 56(1):149-56. doi: 10.1507/endocrj.k08e-237. [PMID: 18997444]
  • Hyun Ah Jung, Na Young Yoon, Sam Sik Kang, Yeong Sik Kim, Jae Sue Choi. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. The Journal of pharmacy and pharmacology. 2008 Sep; 60(9):1227-36. doi: 10.1211/jpp.60.9.0016. [PMID: 18718128]
  • Polyxeni Alexiou, Ioannis Nicolaou, Milan Stefek, Albin Kristl, Vassilis J Demopoulos. Design and synthesis of N-(3,5-difluoro-4-hydroxyphenyl)benzenesulfonamides as aldose reductase inhibitors. Bioorganic & medicinal chemistry. 2008 Apr; 16(7):3926-32. doi: 10.1016/j.bmc.2008.01.042. [PMID: 18267362]
  • Wei Wang, Yoshihito Okada, Haibo Shi, Yongqi Wang, Toru Okuyama. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula. Journal of natural products. 2005 Apr; 68(4):620-2. doi: 10.1021/np040199j. [PMID: 15844965]
  • Yasushi Kiyono, Satomi Kajiyama, Hiromi Fujiwara, Naoki Kanegawa, Hideo Saji. Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG. European journal of nuclear medicine and molecular imaging. 2005 Apr; 32(4):438-42. doi: 10.1007/s00259-004-1694-7. [PMID: 15821963]
  • Yeon Sil Lee, Kuk Hyun Shin, Bak-Kwang Kim, Sanghyun Lee. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Archives of pharmacal research. 2004 Nov; 27(11):1120-2. doi: 10.1007/bf02975115. [PMID: 15595413]
  • Toru Tsugawa, Rikio Shinohara, Akio Nagasaka, Itsuko Nakano, Fumiko Takeda, Minoru Nagata, Naohisa Oda, Yoshikuni Sawai, Nobuki Hayakawa, Atsushi Suzuki, Mitsuyasu Itoh. Alteration of urinary sorbitol excretion in WBN-kob diabetic rats - treatment with an aldose reductase inhibitor. The Journal of endocrinology. 2004 Jun; 181(3):429-35. doi: 10.1677/joe.0.1810429. [PMID: 15171691]
  • Tomoaki Yamaguchi, Takashi Ida, Masazumi Hiraga, Kazuhiko Oishi, Masaatsu K Uchida, Hirotoshi Echizen. [Effects of angiotensin II receptor blockers, angiotensin converting enzyme inhibitors, 3-hydroxy-3-methyl glutaryl (HMG) CoA reductase inhibitors, amlodipine and epalrestat on cultured basilar artery smooth muscle cell proliferation]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2004 Mar; 124(3):159-63. doi: 10.1248/yakushi.124.159. [PMID: 15049134]
  • Itsuko Nakano, Toru Tsugawa, Rikio Shinohara, Fumiko Watanabe, Takashi Fujita, Minoru Nagata, Taiya Kato, Yumiko Himeno, Takako Kobayashi, Kentaro Fujiwara, Mutsuko Nagata, Mitsuyasu Itoh, Akio Nagasaka. Urinary sorbitol measurement and the effect of an aldose reductase inhibitor on its concentration in the diabetic state. Journal of diabetes and its complications. 2003 Nov; 17(6):337-42. doi: 10.1016/s1056-8727(02)00169-1. [PMID: 14583178]
  • M Oya, M Hosokawa, H Tsukada, K Fukuda, H Nakamura, K Tsukiyama, K Nagashima, S Fujimoto, Y Yamada, Y Seino. Effects of an aldose reductase inhibitor on gastroenteropathy in streptozotocin-diabetic rats. Diabetes research and clinical practice. 2003 Nov; 62(2):69-77. doi: 10.1016/s0168-8227(03)00165-7. [PMID: 14581143]
  • Norio Nakamura, Katsuya Yamazaki, Akira Satoh, Masaharu Urakaze, Masashi Kobayashi, Hideaki Yamabe, Hiroshi Osawa, Ken-Ichi Shirato, Toshiyuki Sugawara, Masayuki Nakamura, Michiko Tamura, Ken Okumura. Effects of eparlestat on plasma levels of advanced glycation end products in patients with type 2 diabetes. In vivo (Athens, Greece). 2003 Mar; 17(2):177-80. doi: NULL. [PMID: 12792982]
  • Ioannis Nicolaou, Vassilis J Demopoulos. Substituted pyrrol-1-ylacetic acids that combine aldose reductase enzyme inhibitory activity and ability to prevent the nonenzymatic irreversible modification of proteins from monosaccharides. Journal of medicinal chemistry. 2003 Jan; 46(3):417-26. doi: 10.1021/jm0209477. [PMID: 12540241]
  • Tomoichiro Asano, Yasushi Saito, Masanobu Kawakami, Nobuhiro Yamada. Fidarestat (SNK-860), a potent aldose reductase inhibitor, normalizes the elevated sorbitol accumulation in erythrocytes of diabetic patients. Journal of diabetes and its complications. 2002 Mar; 16(2):133-8. doi: 10.1016/s1056-8727(01)00175-1. [PMID: 12039395]
  • K Iso, H Tada, K Kuboki, T Inokuchi. Long-term effect of epalrestat, an aldose reductase inhibitor, on the development of incipient diabetic nephropathy in Type 2 diabetic patients. Journal of diabetes and its complications. 2001 Sep; 15(5):241-4. doi: 10.1016/s1056-8727(01)00160-x. [PMID: 11522497]
  • N Ishii, H Ikenaga, Z Ogawa, Y Aoki, T Saruta, T Suga. Effects of renal sorbitol accumulation on urinary excretion of enzymes in hyperglycaemic rats. Annals of clinical biochemistry. 2001 Jul; 38(Pt 4):391-8. doi: 10.1258/0004563011900713. [PMID: 11471882]
  • H Sobajima, T Aoki, H Sassa, T Suzuki, K Taniko, M Makino, K Mizuno, T Suzuki. Pharmacological properties of fidarestat, a potent aldose reductase inhibitor, clarified by using sorbitol in human and rat erythrocytes. Pharmacology. 2001 May; 62(4):193-9. doi: 10.1159/000056094. [PMID: 11359994]
  • Y Hamada, J Nakamura, K Naruse, T Komori, K Kato, Y Kasuya, R Nagai, S Horiuchi, N Hotta. Epalrestat, an aldose reductase ihibitor, reduces the levels of Nepsilon-(carboxymethyl)lysine protein adducts and their precursors in erythrocytes from diabetic patients. Diabetes care. 2000 Oct; 23(10):1539-44. doi: 10.2337/diacare.23.10.1539. [PMID: 11023149]
  • M Inaba, M Terada, Y Nishizawa, A Shioi, E Ishimura, S Otani, H Morii. Protective effect of an aldose reductase inhibitor against bone loss in galactose-fed rats: possible involvement of the polyol pathway in bone metabolism. Metabolism: clinical and experimental. 1999 Jul; 48(7):904-9. doi: 10.1016/s0026-0495(99)90227-5. [PMID: 10421234]
  • K Kashima, N Sato, K Sato, H Shimizu, M Mori. Effect of epalrestat, an aldose reductase inhibitor, on the generation of oxygen-derived free radicals in neutrophils from streptozotocin-induced diabetic rats. Endocrinology. 1998 Aug; 139(8):3404-8. doi: 10.1210/endo.139.8.6152. [PMID: 9681489]
  • N Sato, K Kashima, Y Uehara, K Ohtani, H Shimizu, M Mori. Epalrestat, an aldose reductase inhibitor, improves an impaired generation of oxygen-derived free radicals by neutrophils from poorly controlled NIDDM patients. Diabetes care. 1997 Jun; 20(6):995-8. doi: 10.2337/diacare.20.6.995. [PMID: 9167113]
  • T Kotani, Y Nagaki, A Ishii, Y Konishi, H Yago, S Suehiro, N Okukado, K Okamoto. Highly selective aldose reductase inhibitors. 3. Structural diversity of 3-(arylmethyl)-2,4,5-trioxoimidazolidine-1-acetic acids. Journal of medicinal chemistry. 1997 Feb; 40(5):684-94. doi: 10.1021/jm960594+. [PMID: 9057855]
  • A Ishii, T Kotani, Y Nagaki, Y Shibayama, Y Toyomaki, N Okukado, K Ienaga, K Okamoto. Highly selective aldose reductase inhibitors. 1. 3-(Arylalkyl)-2,4,5-trioxoimidazolidine-1-acetic acids. Journal of medicinal chemistry. 1996 Apr; 39(9):1924-7. doi: 10.1021/jm9508393. [PMID: 8627616]
  • Y Hamada, N Araki, S Horiuchi, N Hotta. Role of polyol pathway in nonenzymatic glycation. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 1996; 11 Suppl 5(?):95-8. doi: 10.1093/ndt/11.supp5.95. [PMID: 9044317]
  • S Isogai, T Inokuchi, K Ohe. Effect of an aldose reductase inhibitor on glomerular basement membrane anionic sites in streptozotocin-induced diabetic rats. Diabetes research and clinical practice. 1995 Nov; 30(2):111-6. doi: 10.1016/0168-8227(95)01152-8. [PMID: 8833631]
  • K Uchida, T Kigoshi, S Nakano, T Ishii, M Kitazawa, S Morimoto. Effect of 24 weeks of treatment with epalrestat, an aldose reductase inhibitor, on peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. Clinical therapeutics. 1995 May; 17(3):460-6. doi: 10.1016/0149-2918(95)80111-1. [PMID: 7585850]
  • I Itagaki, K Shimizu, Y Kamanaka, K Ebata, R Kikkawa, M Haneda, Y Shigeta. The effect of an aldose reductase inhibitor (Epalrestat) on diabetic nephropathy in rats. Diabetes research and clinical practice. 1994 Oct; 25(3):147-54. doi: 10.1016/0168-8227(94)90002-7. [PMID: 7851268]
  • Y Takiguchi, K Wada, M Nakashima. Effect of aldose reductase inhibitor on the inhibition of platelet aggregation induced by diabetic rat plasma. European journal of pharmacology. 1992 May; 215(2-3):289-91. doi: 10.1016/0014-2999(92)90041-2. [PMID: 1396993]
  • B L Mylari, T A Beyer, T W Siegel. A highly specific aldose reductase inhibitor, ethyl 1-benzyl-3-hydroxy-2(5H)-oxopyrrole-4-carboxylate, and its congeners. Journal of medicinal chemistry. 1991 Mar; 34(3):1011-8. doi: 10.1021/jm00107a020. [PMID: 1900532]
  • M Sekiguchi, K Watanabe, M Eto, Y Iwashima, A Morikawa, M Takahashi, K Ishii, I Makino. Polyol pathway in tissues of spontaneously diabetic Chinese hamsters (Cricetulus griseus) and the effect of an aldose reductase inhibitor, ONO-2235. Comparative biochemistry and physiology. B, Comparative biochemistry. 1991; 98(4):637-40. doi: 10.1016/0305-0491(91)90268-i. [PMID: 1907900]
  • T Karakida, S Ito, S Homma. In vitro motor activity of intestinal segments of streptozotocin diabetic rats. Journal of the autonomic nervous system. 1989 Feb; 26(1):43-50. doi: 10.1016/0165-1838(89)90106-9. [PMID: 2523418]
  • Y Kurono, A Furukawa, Y Takesue, F L Li, K Ikeda. Photo-stabilization and solubilization of an aldose reductase inhibitor, (E)-3-carboxymethyl-5-[(2E)-methyl-3-phenylpropenylidene]rhodani ne (ONO-2235), by human serum albumin. Chemical & pharmaceutical bulletin. 1987 Jul; 35(7):3045-8. doi: 10.1248/cpb.35.3045. [PMID: 3119240]