Tropine (BioDeep_00000397425)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


Tropisetron Hydrochloride Imp. A (EP); Tropisetron Imp. A (EP); (1R,3r,5S)-8-Methyl-8-azabicyclo[3.2.1]oct-3-ol; Tropine; Tropisetron Hydrochloride Impurity A; Tropisetron Impurity A

化学式: C8H15NO (141.1154)
中文名称: β-托品醇, α-托品醇
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 97.97%

分子结构信息

SMILES: CN1C2CCC1CC(C2)O
InChI: InChI=1S/C8H15NO/c1-9-6-2-3-7(9)5-8(10)4-6/h6-8,10H,2-5H2,1H3/t6-,7+,8+

描述信息

A derivative of tropane having a hydroxy group at the 3-position.
Tropine is a derivative of tropane having a hydroxy group at the 3-position. It has a role as a mouse metabolite. It is a conjugate base of a tropinium.
Tropine is a natural product found in Datura stramonium with data available.
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].
Tropine is a secondary metabolite of Solanaceae plants, is an anticholinergic agent[1]. Tropine is a common intermediate in the synthesis of a variety of bioactive alkaloids, including hyoscyamine and scopolamine[2].

同义名列表

71 个代谢物同义名

Tropine; Tropisetron Hydrochloride Imp. A (EP); Tropisetron Imp. A (EP); (1R,3r,5S)-8-Methyl-8-azabicyclo[3.2.1]oct-3-ol; Tropine; Tropisetron Hydrochloride Impurity A; Tropisetron Impurity A; 3-Tropanol; endo-8-Methyl-8-azabicyclo[3.2.1]octan-3-ol; 8-Methyl-8-azabicyclo[3.2.1]octan-3-ol; (1R,3r,5S)-8-Methyl-8-azabicyclo[3.2.1]oct-3-ol (Tropine); Tropine, European Pharmacopoeia (EP) Reference Standard; rel-(1R,3s,5S)-8-Methyl-8-azabicyclo[3.2.1]octan-3-ol; 8-Azabicyclo[3.2.1]octan-3-ol, 8-methyl-, (3-endo)-; 8-Azabicyclo(3.2.1)octan-3-ol, 8-methyl-, (3-endo)-; TROPISETRON HYDROCHLORIDE IMPURITY A [EP IMPURITY]; 8-AZABICYCLO(3.2.1)OCTAN-3-OL, 8-METHYL-, (3-EXO)-; 8-Azabicyclo[3.2.1]octan-3-ol, 8-methyl-, (3-exo)-; (1R,3s,5S)-8-methyl-8-azabicyclo[3.2.1]octan-3-ol; (1R,3R,5S)-8-methyl-8-azabicyclo[3.2.1]octan-3-ol; (3-endo)-8-methyl-8-azabicyclo[3.2.1]octan-3-ol; (1R,5S)-8-methyl-8-azabicyclo[3.2.1]octan-3-ol; 8-Azabicyclo(3.2.1)octan-3-ol, 8-methyl-, exo-; (3-exo)-8-methyl-8-azabicyclo[3.2.1]octan-3-ol; (5S,1R)-8-methyl-8-azabicyclo[3.2.1]octan-3-ol; 5-21-01-00219 (Beilstein Handbook Reference); 3-exo-8-Methyl-8-azabicyclo[3.2.1]octan-3-ol; ENDO-8-METHYL-8-AZABICYCLO(3.2.1)OCTAN-3-OL; endo-8-methyl-8-azabicyclo[3.2.1]octan-3-ol; exo-8-Methyl-8-azabicyclo(3.2.1)octan-3-ol; exo-8-methyl-8-azabicyclo[3.2.1]octan-3-ol; Pseudotropine; 3?-Tropanol; psi-Tropine; 8-Methyl-8-azabicyclo[3.2.1]-3-octanol; 1-alpha-H,5-alpha-H-Tropan-3-alpha-ol; tropine hydrochloride, (endo)-isomer; 1-alpha-H,5-alpha-H-Tropan-3-beta-ol; 2,3-Dihydro-3alpha-hydroxytropidine; tropine hydrobromide, (endo)-isomer; tropine hydrochloride, (exo)-isomer; 1alphaH,5alphaH-Tropan-3alpha-ol; 1alphaH,5alphaH-Tropan-3beta-ol; CYHOMWAPJJPNMW-DHBOJHSNSA-N; CYHOMWAPJJPNMW-JIGDXULJSA-N; Tropine, >=97.0\\% (NT); TROPINE [EP IMPURITY]; tropine, (exo)-isomer; PSEUDOTROPINE [MI]; tropan-3.alpha.-ol; tropan-3.beta.-ol; tropan-3alpha-ol; 3-alpha-Tropanol; tropane-3beta-ol; 3.beta.-Tropanol; 3-Pseudotropanol; tropan-3beta-ol; UNII-L9Q7Z9D09L; .ALPHA.-TROPINE; 3-beta-Tropanol; UNII-7YXR19M72Y; 3alpha-Tropanol; 3beta-Tropanol; Pseudotropanol; Tropine, 98\\%; .PSI.-TROPINE; Pseudotropine; Tox21_202725; Tropan-3a-ol; TROPINE [MI]; psi-Tropine; Rel-Tropine; 3-Tropanol; 7YXR19M72Y; L9Q7Z9D09L; AI3-52686; Tropanol; Pseudotropine; Tropine; Tropine



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

18 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(18)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

51 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Monique de Nijs, Colin Crews, Folke Dorgelo, Susan MacDonald, Patrick P J Mulder. Emerging Issues on Tropane Alkaloid Contamination of Food in Europe. Toxins. 2023 Jan; 15(2):. doi: 10.3390/toxins15020098. [PMID: 36828413]
  • Radin Sadre, Thilani M Anthony, Josh M Grabar, Matthew A Bedewitz, A Daniel Jones, Cornelius S Barry. Metabolomics-guided discovery of cytochrome P450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids. Nature communications. 2022 07; 13(1):3832. doi: 10.1038/s41467-022-31653-1. [PMID: 35780230]
  • Prashanth Srinivasan, Christina D Smolke. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nature communications. 2019 08; 10(1):3634. doi: 10.1038/s41467-019-11588-w. [PMID: 31406117]
  • Jesús Marín-Sáez, Roberto Romero-González, Antonia Garrido Frenich. Degradation of tropane alkaloids in baked bread samples contaminated with Solanaceae seeds. Food research international (Ottawa, Ont.). 2019 08; 122(?):585-592. doi: 10.1016/j.foodres.2019.01.027. [PMID: 31229117]
  • Jesús Marín-Sáez, Roberto Romero-González, Antonia Garrido Frenich. Effect of tea making and boiling processes on the degradation of tropane alkaloids in tea and pasta samples contaminated with Solanaceae seeds and coca leaf. Food chemistry. 2019 Jul; 287(?):265-272. doi: 10.1016/j.foodchem.2019.02.091. [PMID: 30857698]
  • Yu Ping, Xiaodong Li, Wenjing You, Guoqiang Li, Mengquan Yang, Wenping Wei, Zhihua Zhou, Youli Xiao. De Novo Production of the Plant-Derived Tropine and Pseudotropine in Yeast. ACS synthetic biology. 2019 06; 8(6):1257-1262. doi: 10.1021/acssynbio.9b00152. [PMID: 31181154]
  • Katarzyna M Romek, Gérald S Remaud, Virginie Silvestre, Piotr Paneth, Richard J Robins. Non-statistical 13C Fractionation Distinguishes Co-incident and Divergent Steps in the Biosynthesis of the Alkaloids Nicotine and Tropine. The Journal of biological chemistry. 2016 08; 291(32):16620-9. doi: 10.1074/jbc.m116.734087. [PMID: 27288405]
  • Amit K Kushwaha, Neelam S Sangwan, Sandhya Tripathi, Rajender S Sangwan. Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf. Gene. 2013 Mar; 516(2):238-47. doi: 10.1016/j.gene.2012.11.091. [PMID: 23266822]
  • Amit Kumar Kushwaha, Neelam Singh Sangwan, Prabodh Kumar Trivedi, Arvind Singh Negi, Laxminarain Misra, Rajender Singh Sangwan. Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha): biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns. PloS one. 2013; 8(9):e74777. doi: 10.1371/journal.pone.0074777. [PMID: 24086372]
  • Guoyin Kai, Sheng Yang, Xiuqin Luo, Wentao Zhou, Xueqing Fu, Ang Zhang, Yan Zhang, Jianbo Xiao. Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC biotechnology. 2011 Apr; 11(?):43. doi: 10.1186/1472-6750-11-43. [PMID: 21526999]
  • Rajesh Arora, R Chawla, Rohit Marwah, P Arora, R K Sharma, Vinod Kaushik, R Goel, A Kaur, M Silambarasan, R P Tripathi, J R Bhardwaj. Potential of Complementary and Alternative Medicine in Preventive Management of Novel H1N1 Flu (Swine Flu) Pandemic: Thwarting Potential Disasters in the Bud. Evidence-based complementary and alternative medicine : eCAM. 2011; 2011(?):586506. doi: 10.1155/2011/586506. [PMID: 20976081]
  • Harald John, Florian Eyer, Thomas Zilker, Horst Thiermann. High-performance liquid-chromatographic tandem-mass spectrometric methods for atropinesterase-mediated enantioselective and chiral determination of R- and S-hyoscyamine in plasma. Analytica chimica acta. 2010 Nov; 680(1-2):32-40. doi: 10.1016/j.aca.2010.09.018. [PMID: 20969988]
  • Erik R Hill, Jinbin Tian, Michael R Tilley, Michael X Zhu, Howard H Gu. Potencies of cocaine methiodide on major cocaine targets in mice. PloS one. 2009 Oct; 4(10):e7578. doi: 10.1371/journal.pone.0007578. [PMID: 19855831]
  • Guoyin Kai, Li Li, Yuxin Jiang, Xiangming Yan, Yan Zhang, Xuan Lu, Pan Liao, Jianbo Chen. Molecular cloning and characterization of two tropinone reductases in Anisodus acutangulus and enhancement of tropane alkaloid production in AaTRI-transformed hairy roots. Biotechnology and applied biochemistry. 2009 Oct; 54(3):177-86. doi: 10.1042/ba20090171. [PMID: 19751215]
  • David Arráez-Román, Gabriela Zurek, Carsten Bässmann, Antonio Segura-Carretero, Alberto Fernández-Gutiérrez. Characterization of Atropa belladonna L. compounds by capillary electrophoresis-electrospray ionization-time of flight-mass spectrometry and capillary electrophoresis-electrospray ionization-ion trap-mass spectrometry. Electrophoresis. 2008 May; 29(10):2112-6. doi: 10.1002/elps.200700468. [PMID: 18425749]
  • Andrea Brock, Wolfgang Brandt, Birgit Dräger. The functional divergence of short-chain dehydrogenases involved in tropinone reduction. The Plant journal : for cell and molecular biology. 2008 May; 54(3):388-401. doi: 10.1111/j.1365-313x.2008.03422.x. [PMID: 18221363]
  • Ute Richter, Uwe Sonnewald, Birgit Dräger. Calystegines in potatoes with genetically engineered carbohydrate metabolism. Journal of experimental botany. 2007; 58(7):1603-15. doi: 10.1093/jxb/erl295. [PMID: 17431026]
  • Heike Kaiser, Ute Richter, Ronald Keiner, Anja Brabant, Bettina Hause, Birgit Dräger. Immunolocalisation of two tropinone reductases in potato (Solanum tuberosum L.) root, stolon, and tuber sprouts. Planta. 2006 Dec; 225(1):127-37. doi: 10.1007/s00425-006-0335-8. [PMID: 16845528]
  • Birgit Dräger. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry. 2006 Feb; 67(4):327-37. doi: 10.1016/j.phytochem.2005.12.001. [PMID: 16426652]
  • Huaixia Chen, Yong Chen, Peng Du, Fengmei Han, Hong Wang, Huashan Zhang. Sensitive and specific liquid chromatographic-tandem mass spectrometric assay for atropine and its eleven metabolites in rat urine. Journal of pharmaceutical and biomedical analysis. 2006 Jan; 40(1):142-50. doi: 10.1016/j.jpba.2005.06.027. [PMID: 16087309]
  • Ute Richter, Grit Rothe, Anne-Katrin Fabian, Bettina Rahfeld, Birgit Dräger. Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. Journal of experimental botany. 2005 Feb; 56(412):645-52. doi: 10.1093/jxb/eri067. [PMID: 15642710]
  • Rawia Zayed, Michael Wink. Induction of tropane alkaloid formation in transformed root cultures of Brugmansia suaveolens (Solanaceae). Zeitschrift fur Naturforschung. C, Journal of biosciences. 2004 Nov; 59(11-12):863-7. doi: 10.1515/znc-2004-11-1216. [PMID: 15666547]
  • Ophélie Fliniaux, François Mesnard, Sophie Raynaud-Le Grandic, Sylvie Baltora-Rosset, Christophe Bienaimé, Richard J Robins, Marc-André Fliniaux. Altered nitrogen metabolism associated with de-differentiated suspension cultures derived from root cultures of Datura stramonium studied by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy. Journal of experimental botany. 2004 May; 55(399):1053-60. doi: 10.1093/jxb/erh119. [PMID: 15073218]
  • Grit Rothe, Akira Hachiya, Yasuyuki Yamada, Takashi Hashimoto, Birgit Dräger. Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. Journal of experimental botany. 2003 Sep; 54(390):2065-70. doi: 10.1093/jxb/erg227. [PMID: 12885861]
  • Yvonne Scholl, Bernd Schneider, Birgit Dräger. Biosynthesis of calystegines: 15N NMR and kinetics of formation in root cultures of Calystegia sepium. Phytochemistry. 2003 Feb; 62(3):325-32. doi: 10.1016/s0031-9422(02)00544-7. [PMID: 12620344]
  • Ronald Keiner, Heike Kaiser, Keiji Nakajima, Takashi Hashimoto, Birgit Dräger. Molecular cloning, expression and characterization of tropinone reductase II, an enzyme of the SDR family in Solanum tuberosum (L.). Plant molecular biology. 2002 Feb; 48(3):299-308. doi: 10.1023/a:1013315110746. [PMID: 11855731]
  • Y Scholl, D Höke, B Dräger. Calystegines in Calystegia sepium derive from the tropane alkaloid pathway. Phytochemistry. 2001 Nov; 58(6):883-9. doi: 10.1016/s0031-9422(01)00362-4. [PMID: 11684185]
  • P C Schultheiss, A P Knight, J L Traub-Dargatz, F G Todd, F R Stermitz. Toxicity of field bindweed (Convolvulus arvensis) to mice. Veterinary and human toxicology. 1995 Oct; 37(5):452-4. doi: . [PMID: 8592835]
  • H He, G McKay, K K Midha. Phase I and II metabolites of benztropine in rat urine and bile. Xenobiotica; the fate of foreign compounds in biological systems. 1995 Aug; 25(8):857-72. doi: 10.3109/00498259509061899. [PMID: 8779226]
  • M J Van der Meer, H K Hundt, F O Müller. The metabolism of atropine in man. The Journal of pharmacy and pharmacology. 1986 Oct; 38(10):781-4. doi: 10.1111/j.2042-7158.1986.tb04494.x. [PMID: 2879005]
  • P H Hinderling, U Gundert-Remy, O Schmidlin. Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans. I: Pharmacokinetics. Journal of pharmaceutical sciences. 1985 Jul; 74(7):703-10. doi: 10.1002/jps.2600740702. [PMID: 4032240]
  • M Eckert, P H Hinderling. Atropine: a sensitive gas chromatography-mass spectrometry assay and prepharmacokinetic studies. Agents and actions. 1981 Nov; 11(5):520-31. doi: 10.1007/bf02004716. [PMID: 7337075]