Agaric_acid (BioDeep_00000396658)

   

PANOMIX_OTCML-2023


代谢物信息卡片


1-hexadecyl-2-hydroxypropane-1,2,3-tricarboxylic acid

化学式: C22H40O7 (416.277389)
中文名称: 落叶松蕈酸, 琼脂酸
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 54.76%

分子结构信息

SMILES: CCCCCCCCCCCCCCCCC(C(=O)O)C(CC(=O)O)(C(=O)O)O
InChI: InChI=1S/C22H40O7/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-18(20(25)26)22(29,21(27)28)17-19(23)24/h18,29H,2-17H2,1H3,(H,23,24)(H,25,26)(H,27,28)

描述信息

Agaric acid is a natural product found in Ischnoderma benzoinum with data available.
C471 - Enzyme Inhibitor
Agaric acid (Agaricinic Acid) is obtained from various plants of the fungous tribe, i.e. Polyporus officinalis and Polyporus igniarius. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Agaric acid promotes efflux of accumulated Ca2+, collapse of transmembrane potential, and mitochondrial swelling. Agaric acid is used to regulate lipid metabolism[1].
Agaric acid (Agaricinic Acid) is obtained from various plants of the fungous tribe, i.e. Polyporus officinalis and Polyporus igniarius. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Agaric acid promotes efflux of accumulated Ca2+, collapse of transmembrane potential, and mitochondrial swelling. Agaric acid is used to regulate lipid metabolism[1].
Agaric acid (Agaricinic Acid) is obtained from various plants of the fungous tribe, i.e. Polyporus officinalis and Polyporus igniarius. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Agaric acid promotes efflux of accumulated Ca2+, collapse of transmembrane potential, and mitochondrial swelling. Agaric acid is used to regulate lipid metabolism[1].

同义名列表

43 个代谢物同义名

1-hexadecyl-2-hydroxypropane-1,2,3-tricarboxylic acid; 3-Carboxy-2-hexadecyl-3-hydroxy-pentanedioic acid; 1,2,3-NONADECANETRICARBOXYLIC ACID, 2-HYDROXY-; 2-Hydroxy-1,2,3-nona?decane?tricarboxylic acid; 2-Hydroxy-1,2,3-nona-decane-tricarboxylic acid; 1,2,3-Nonadecanetricarboxylicacid, 2-hydroxy-; 1,3-Nonadecanetricarboxylic acid, 2-hydroxy-; 2-Hydroxynonadecane-1,2,3-tricarboxylic acid; 4-03-00-01284 (Beilstein Handbook Reference); 2-hydroxy-1,2,3-nonadecanetricarboxylic acid; (-)-2-Hydroxy-1,2,3-nonadecantricarbonsaeure; 2-HYDROXY-1,2,3-NON-DECANETRICARBOXLIC ACID; Agaric acid sesquihydrate (Salt/Mix); Agaricinic AcidAgaricinic Acid; Agaricic acid / Agaric acid; HZLCGUXUOFWCCN-UHFFFAOYSA-N; .alpha.-Cetylcitric acid; alpha-cetyl citric acid; alpha-Cetylcitric acid; n-Hexadecylcitric acid; AGARICIC ACID, (+/-)-; AGARIC ACID [WHO-DD]; hexadecylcitric acid; (+/-)-AGARICIC ACID; AGARIC ACID (MART.); AGARIC ACID [MART.]; AGARICIC ACID [MI]; (+-)-agaricic acid; Agaric acid, 97\\%; AGARICINUM [HPUS]; Agaricinic acid; UNII-2XE342S7L6; Tox21_112543_1; Agaricinsaeure; Agaricic Acid; Laricic acid; NCI60_019676; Tox21_112543; Agaric acid; 2XE342S7L6; AGARICINUM; AGARICACID; agaricin



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • José Batista, Georg Schlechtingen, Tim Friedrichson, Tobias Braxmeier, Jürgen Bajorath. Lipid-like sulfoxides and amine oxides as inhibitors of mast cell activation. European journal of medicinal chemistry. 2011 Jun; 46(6):2147-51. doi: 10.1016/j.ejmech.2011.02.068. [PMID: 21421276]
  • Noemí García, Cecilia Zazueta, Natalia Pavón, Edmundo Chávez. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity. Mitochondrion. 2005 Aug; 5(4):272-81. doi: 10.1016/j.mito.2005.05.002. [PMID: 16050990]
  • J Kanaani, H Ginsburg. Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte. Regulation of ATP levels by means of an adenylate translocator and adenylate kinase. The Journal of biological chemistry. 1989 Feb; 264(6):3194-9. doi: 10.1016/s0021-9258(18)94050-0. [PMID: 2536737]