Phaclofen (BioDeep_00000391002)

   


代谢物信息卡片


Phaclofen

化学式: C9H13ClNO3P (249.0321548)
中文名称: 法洛芬
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC(=CC=C1C(CN)CP(=O)(O)O)Cl
InChI: InChI=1S/C9H13ClNO3P/c10-9-3-1-7(2-4-9)8(5-11)6-15(12,13)14/h1-4,8H,5-6,11H2,(H2,12,13,14)

描述信息

D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists
Phaclofen is a selective GABAB receptor antagonist. Phaclofen is a peripheral and central baclofen antagonist. Phaclofen maybe a potential compound in determining the physiological significance of central and peripheral bicuculline-insensitive receptors with which GABA and (-)-baclofen interact[1][2].

同义名列表

1 个代谢物同义名

Phaclofen



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Alessandra T Peana, Giulia Muggironi, Liliana Spina, Michela Rosas, Sanjay B Kasture, Elisabetta Cotti, Elio Acquas. Effects of Withania somnifera on oral ethanol self-administration in rats. Behavioural pharmacology. 2014 Oct; 25(7):618-28. doi: 10.1097/fbp.0000000000000078. [PMID: 25115596]
  • Ana Elisa Gonçalves, Cristiani Bürger, Solomon K S Amoah, Rogério Tolardo, Maique W Biavatti, Márcia M de Souza. The antidepressant-like effect of Hedyosmum brasiliense and its sesquiterpene lactone, podoandin in mice: evidence for the involvement of adrenergic, dopaminergic and serotonergic systems. European journal of pharmacology. 2012 Jan; 674(2-3):307-14. doi: 10.1016/j.ejphar.2011.11.009. [PMID: 22115892]
  • Xin Zhang, Bin Cheng, Xianghong Jing, Yongfa Qiao, Xinyan Gao, Huijuan Yu, Bing Zhu, Haifa Qiao. NMDA Receptors of Gastric-Projecting Neurons in the Dorsal Motor Nucleus of the Vagus Mediate the Regulation of Gastric Emptying by EA at Weishu (BL21). Evidence-based complementary and alternative medicine : eCAM. 2012; 2012(?):583479. doi: 10.1155/2012/583479. [PMID: 22654955]
  • O B Balemba, Y Bhattarai, C Stenkamp-Strahm, M S B Lesakit, G M Mawe. The traditional antidiarrheal remedy, Garcinia buchananii stem bark extract, inhibits propulsive motility and fast synaptic potentials in the guinea pig distal colon. Neurogastroenterology and motility. 2010 Dec; 22(12):1332-9. doi: 10.1111/j.1365-2982.2010.01583.x. [PMID: 20718943]
  • Sarai Hess, Cristina Padoani, Laiana Carla Scorteganha, Iandra Holzmann, Angela Malheiros, Rosendo Augusto Yunes, Franco Delle Monache, Márcia Maria de Souza. Assessment of mechanisms involved in antinociception caused by myrsinoic acid B. Biological & pharmaceutical bulletin. 2010; 33(2):209-15. doi: 10.1248/bpb.33.209. [PMID: 20118542]
  • Cristina Romei, Elisa Luccini, Maurizio Raiteri, Luca Raiteri. GABA(B) presynaptic receptors modulate glycine exocytosis from mouse spinal cord and hippocampus glycinergic nerve endings. Pharmacological research. 2009 Mar; 59(3):154-9. doi: 10.1016/j.phrs.2008.12.004. [PMID: 19135152]
  • Ken'ichi Yamaguchi, Takaho Yamada. Roles of forebrain GABA receptors in controlling vasopressin secretion and related phenomena under basal and hyperosmotic circumstances in conscious rats. Brain research bulletin. 2008 Sep; 77(1):61-9. doi: 10.1016/j.brainresbull.2008.04.009. [PMID: 18639747]
  • Chi Wang, De-Feng Zhou, Xiao-Wei Shuai, Jian-Xiang Liu, Peng-Yan Xie. Effects and mechanisms of electroacupuncture at PC6 on frequency of transient lower esophageal sphincter relaxation in cats. World journal of gastroenterology. 2007 Sep; 13(36):4873-80. doi: 10.3748/wjg.v13.i36.4873. [PMID: 17828819]
  • Ying Han, Jiong Qin, Ding-fang Bu, Zhi-xian Yang, Xing-zhi Chang, Jun-bao Du. [Effect of gamma-aminobutyric acid B receptor on nitric oxide/nitric oxide synthase system during recurrent febrile seizures]. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences. 2006 Apr; 38(2):132-4. doi: . [PMID: 16617352]
  • S R Singh, K P Briski. Central GABAA but not GABAB receptors mediate suppressive effects of caudal hindbrain glucoprivation on the luteinizing hormone surge in steroid-primed, ovariectomized female rats. Journal of neuroendocrinology. 2005 Jul; 17(7):407-12. doi: 10.1111/j.1365-2826.2005.01310.x. [PMID: 15946158]
  • Daniel C Javitt, Audrey Hashim, Henry Sershen. Modulation of striatal dopamine release by glycine transport inhibitors. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2005 Apr; 30(4):649-56. doi: 10.1038/sj.npp.1300589. [PMID: 15688094]
  • Christof Geigerseder, Richard F G Doepner, Andrea Thalhammer, Annette Krieger, Artur Mayerhofer. Stimulation of TM3 Leydig cell proliferation via GABA(A) receptors: a new role for testicular GABA. Reproductive biology and endocrinology : RB&E. 2004 Mar; 2(?):13. doi: 10.1186/1477-7827-2-13. [PMID: 15040802]
  • Marta Soaje, Claudia Bregonzio, Rubén W Carón, Ricardo P Deis. Neurotransmitters involved in the opioid regulation of prolactin secretion at the end of pregnancy in rats. Neuroendocrinology. 2004; 80(1):11-20. doi: 10.1159/000080520. [PMID: 15340248]
  • Tae-Cheon Kang, Seung-Kook Park, In Koo Hwang, Sung-Jin An, Moo Ho Won. Presynaptic gamma-aminobutyric acid type B receptor-mediated regulation of vesicular gamma-aminobutyric acid transporter expression in the gerbil hippocampus. Neuroscience letters. 2003 Jul; 346(1-2):49-52. doi: 10.1016/s0304-3940(03)00560-3. [PMID: 12850545]
  • Marina Perfumi, Manuela Santoni, Roberto Ciccocioppo, Maurizio Massi. Blockade of gamma-aminobutyric acid receptors does not modify the inhibiton of ethanol intake induced by Hypericum perforatum in rats. Alcohol and alcoholism (Oxford, Oxfordshire). 2002 Nov; 37(6):540-6. doi: 10.1093/alcalc/37.6.540. [PMID: 12414544]
  • Jens M Langosch, X-Y Zhou, M Heinen, S Kupferschmid, S S Chatterjee, M Nöldner, J Walden. St John's wort (Hypericum perforatum) modulates evoked potentials in guinea pig hippocampal slices via AMPA and GABA receptors. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. 2002 Jun; 12(3):209-16. doi: 10.1016/s0924-977x(02)00022-6. [PMID: 12007672]
  • L Pinilla, L C González, M Tena-Sempere, E Aguilar. Interactions between GABAergic and aminoacidergic pathways in the control of gonadotropin and GH secretion in pre-pubertal female rats. Journal of endocrinological investigation. 2002 Feb; 25(2):96-100. doi: 10.1007/bf03343970. [PMID: 11929096]
  • A K Mehta, N M Muschaweck, D Y Maeda, A Coop, M K Ticku. Binding characteristics of the gamma-hydroxybutyric acid receptor antagonist [(3)H](2E)-(5-hydroxy-5,7,8,9-tetrahydro-6H-benzo[a][7]annulen-6-ylidene) ethanoic acid in the rat brain. The Journal of pharmacology and experimental therapeutics. 2001 Dec; 299(3):1148-53. doi: NULL. [PMID: 11714906]
  • J M Langosch, X Y Zhou, M Heinen, S S Chatterjee, M Nöldner, J Walden. Effects of Hypericum perforatum L. on evoked potentials in guinea pig hippocampal slices. Pharmacopsychiatry. 2001 Jul; 34 Suppl 1(?):S83-8. doi: 10.1055/s-2001-15511. [PMID: 11518083]
  • S C Hood, N B Schwartz. Sex difference in serum luteinizing hormone postgonadectomy in the rat: role of gamma-aminobutyric acid-ergic inhibition. Endocrine. 2000 Feb; 12(1):35-40. doi: 10.1385/endo:12:1:35. [PMID: 10855688]
  • C J Scott, I J Clarke. Evidence that changes in the function of the subtypes of the receptors for gamma-amino butyric acid may be involved in the seasonal changes in the negative-feedback effects of estrogen on gonadotropin-releasing hormone secretion and plasma luteinizing hormone levels in the ewe. Endocrinology. 1993 Dec; 133(6):2904-12. doi: 10.1210/endo.133.6.8243318. [PMID: 8243318]
  • V Lux-Lantos, E Rey, C Libertun. Activation of GABA B receptors in the anterior pituitary inhibits prolactin and luteinizing hormone secretion. Neuroendocrinology. 1992 Nov; 56(5):687-93. doi: 10.1159/000126294. [PMID: 1336817]
  • R D Hartman, J R He, C A Barraclough. Gamma-aminobutyric acid-A and -B receptor antagonists increase luteinizing hormone-releasing hormone neuronal responsiveness to intracerebroventricular norepinephrine in ovariectomized estrogen-treated rats. Endocrinology. 1990 Sep; 127(3):1336-45. doi: 10.1210/endo-127-3-1336. [PMID: 2167216]
  • A Michler. Involvement of GABA receptors in the regulation of neurite growth in cultured embryonic chick tectum. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 1990; 8(4):463-72. doi: 10.1016/0736-5748(90)90078-g. [PMID: 2174636]