Thymine glycol (BioDeep_00000036573)
human metabolite
代谢物信息卡片
化学式: C5H8N2O4 (160.0484048)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CC1(C(NC(=O)NC1=O)O)O
InChI: InChI=1S/C5H8N2O4/c1-5(11)2(8)6-4(10)7-3(5)9/h2,8,11H,1H3,(H2,6,7,9,10)
描述信息
Thymine glycol belongs to the family of Hydropyrimidines. These are compounds containing an hydrogenated pyrimidine ring (i.e containing less than the maximum bumber of double bonds.).
同义名列表
15 个代谢物同义名
5,6-Dihydroxy-5-methyldihydropyrimidine-2,4(1H,3H)-dione; 5-methyl-4,5-dihydropyrimidine-2,4,5,6-tetrol; 5-methyl-4H-pyrimidine-2,4,5,6-tetrol; Thymine glycol, ((trans)-(+-))-isomer; Thymine glycol, ((cis)-(+-))-isomer; Thymine glycol, (5R-trans)-isomer; Thymine glycol, (5S-trans)-isomer; 5,6-Dihydroxy-5,6-dihydrothymine; Thymine glycol, (5R-cis)-isomer; Thymine glycol, (5S-cis)-isomer; Thymine glycol, (trans)-isomer; Thymine glycol, (cis)-isomer; 5,6-Dihydroxydihydrothymine; Thymine glycol; Glycolthymine
数据库引用编号
6 个数据库交叉引用编号
- ChEBI: CHEBI:29128
- PubChem: 18058
- HMDB: HMDB0042037
- Wikipedia: Thymine glycol
- chemspider: 17061
- CAS: 2943-56-8
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
85 个相关的代谢反应过程信息。
Reactome(85)
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
TDG:(T:G)-dsDNA ⟶ TDG:AP-dsDNA + Thy
- Cleavage of the damaged pyrimidine:
TDG:(T:G)-dsDNA ⟶ TDG:AP-dsDNA + Thy
- DNA Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base Excision Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base Excision Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base Excision Repair:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base Excision Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Base-Excision Repair, AP Site Formation:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- Depyrimidination:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
- Cleavage of the damaged pyrimidine:
NTHL1:DHU-dsDNA ⟶ DHU + NTHL1:AP-dsDNA
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Noe Baruch-Torres, Junpei Yamamoto, Víctor Juárez-Quintero, Shigenori Iwai, Luis G Brieba. Plant organellar DNA polymerases bypass thymine glycol using two conserved lysine residues.
The Biochemical journal.
2020 03; 477(5):1049-1059. doi:
10.1042/bcj20200043
. [PMID: 32108856] - Chenxu Zhu, Lining Lu, Jun Zhang, Zongwei Yue, Jinghui Song, Shuai Zong, Menghao Liu, Olivia Stovicek, Yi Qin Gao, Chengqi Yi. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.
Proceedings of the National Academy of Sciences of the United States of America.
2016 07; 113(28):7792-7. doi:
10.1073/pnas.1604591113
. [PMID: 27354518] - Paulina Prorok, Christine Saint-Pierre, Didier Gasparutto, Olga S Fedorova, Alexander A Ishchenko, Hervé Leh, Malcolm Buckle, Barbara Tudek, Murat Saparbaev. Highly mutagenic exocyclic DNA adducts are substrates for the human nucleotide incision repair pathway.
PloS one.
2012; 7(12):e51776. doi:
10.1371/journal.pone.0051776
. [PMID: 23251620] - R Funabiki, K Takeshita, Y Miura, M Shibasato, T Nagasawa. Dietary supplement of G-rutin reduces oxidative damage in the rodent model.
Journal of agricultural and food chemistry.
1999 Mar; 47(3):1078-82. doi:
10.1021/jf980755d
. [PMID: 10552419] - L Lyras, R H Perry, E K Perry, P G Ince, A Jenner, P Jenner, B Halliwell. Oxidative damage to proteins, lipids, and DNA in cortical brain regions from patients with dementia with Lewy bodies.
Journal of neurochemistry.
1998 Jul; 71(1):302-12. doi:
10.1046/j.1471-4159.1998.71010302.x
. [PMID: 9648879] - N Ichikawa, K Watanabe, S Tomikawa, T Nagao, H Uchida. Damage and repair of DNA after liver transplantation assessed by urinary thymine glycol output.
Transplantation proceedings.
1996 Jun; 28(3):1765-6. doi:
NULL
. [PMID: 8658873] - E H Cao, J J Wang. Oxidative damage to DNA: levels of thymine glycol and thymidine glycol in neoplastic human urines.
Carcinogenesis.
1993 Jul; 14(7):1359-62. doi:
10.1093/carcin/14.7.1359
. [PMID: 8330350] - L R Karam, D S Bergtold, M G Simic. Biomarkers of OH radical damage in vivo.
Free radical research communications.
1991; 12-13 Pt 1(?):11-6. doi:
10.3109/10715769109145762
. [PMID: 1649078] - R Adelman, R L Saul, B N Ames. Oxidative damage to DNA: relation to species metabolic rate and life span.
Proceedings of the National Academy of Sciences of the United States of America.
1988 Apr; 85(8):2706-8. doi:
10.1073/pnas.85.8.2706
. [PMID: 3128794] - D S Bergtold, M G Simic, H Alessio, R G Cutler. Urine biomarkers for oxidative DNA damage.
Basic life sciences.
1988; 49(?):483-9. doi:
10.1007/978-1-4684-5568-7_75
. [PMID: 3250507] - R Cathcart, E Schwiers, R L Saul, B N Ames. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage.
Proceedings of the National Academy of Sciences of the United States of America.
1984 Sep; 81(18):5633-7. doi:
10.1073/pnas.81.18.5633
. [PMID: 6592579] - B N Ames. The detection of environmental mutagens and potential carcinogens.
Cancer.
1984 May; 53(10):2034-40. doi:
10.1002/1097-0142(19840515)53:10<2034::aid-cncr2820531005>3.0.co;2-s
. [PMID: 6367933] - S A Leadon, P C Hanawalt. Monoclonal antibody to DNA containing thymine glycol.
Mutation research.
1983 Aug; 112(4):191-200. doi:
10.1016/0167-8817(83)90006-8
. [PMID: 6888408]