Pivaloylcarnitine (BioDeep_00000036565)

   

human metabolite Endogenous


代谢物信息卡片


3-[(2,2-dimethylpropanoyl)oxy]-4-(trimethylazaniumyl)butanoate

化学式: C12H23NO4 (245.16269979999998)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C)(C)C(=O)OC(CC(=O)[O-])C[N+](C)(C)C
InChI: InChI=1S/C12H23NO4/c1-12(2,3)11(16)17-9(7-10(14)15)8-13(4,5)6/h9H,7-8H2,1-6H3

描述信息

Pivaloylcarnitine is an acylcarnitine. More specifically, it is an pivalic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Pivaloylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine Pivaloylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50\\% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

同义名列表

4 个代谢物同义名

3-[(2,2-dimethylpropanoyl)oxy]-4-(trimethylazaniumyl)butanoate; 3-[(2,2-dimethylpropanoyl)oxy]-4-(trimethylammonio)butanoate; Pivaloyl carnitine; pivaloylcarnitine



数据库引用编号

6 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Kimitaka Nakazaki, Erika Ogawa, Mika Ishige, Nobuyuki Ishige, Tatsuo Fuchigami, Shori Takahashi. Hypocarnitinemia Observed in an Infant Treated with Short-Term Administration of Antibiotic Containing Pivalic Acid. The Tohoku journal of experimental medicine. 2018 04; 244(4):279-282. doi: 10.1620/tjem.244.279. [PMID: 29628457]
  • Paul E Minkler, Maria S K Stoll, Stephen T Ingalls, Charles L Hoppel. Selective and accurate C5 acylcarnitine quantitation by UHPLC-MS/MS: Distinguishing true isovaleric acidemia from pivalate derived interference. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Sep; 1061-1062(?):128-133. doi: 10.1016/j.jchromb.2017.07.018. [PMID: 28734160]
  • Sabrina Forni, Xiaowei Fu, Susan E Palmer, Lawrence Sweetman. Rapid determination of C4-acylcarnitine and C5-acylcarnitine isomers in plasma and dried blood spots by UPLC-MS/MS as a second tier test following flow-injection MS/MS acylcarnitine profile analysis. Molecular genetics and metabolism. 2010 Sep; 101(1):25-32. doi: 10.1016/j.ymgme.2010.05.012. [PMID: 20591710]
  • Yoko Nakajima, Tetsuya Ito, Yasuhiro Maeda, Sayaka Ichiki, Naruji Sugiyama, Mihoko Mizuno, Yasuko Makino, Tokio Sugiura, Yukihisa Kurono, Hajime Togari. Detection of pivaloylcarnitine in pediatric patients with hypocarnitinemia after long-term administration of pivalate-containing antibiotics. The Tohoku journal of experimental medicine. 2010 Aug; 221(4):309-13. doi: 10.1620/tjem.221.309. [PMID: 20651467]
  • Liliane Todesco, Michael Bodmer, Karin Vonwil, Daniel Häussinger, Stephan Krähenbühl. Interaction between pivaloylcarnitine and L-carnitine transport into L6 cells overexpressing hOCTN2. Chemico-biological interactions. 2009 Aug; 180(3):472-7. doi: 10.1016/j.cbi.2009.02.014. [PMID: 19539806]
  • Shuichi Ohnishi, Noboru Okamura, Shingo Sakamoto, Hiroshi Hasegawa, Ryo Norikura, Eri Kanaoka, Kouji Takahashi, Kazutoshi Horie, Kiyoshi Sakamoto, Takahiko Baba. Role of Na+/L-carnitine transporter (OCTN2) in renal handling of pivaloylcarnitine and valproylcarnitine formed during pivalic acid-containing prodrugs and valproic acid treatment. Drug metabolism and pharmacokinetics. 2008; 23(4):293-303. doi: 10.2133/dmpk.23.293. [PMID: 18762717]
  • Noboru Okamura, Shuichi Ohnishi, Hiroyuki Shimaoka, Ryo Norikura, Hiroshi Hasegawa. Involvement of recognition and interaction of carnitine transporter in the decrease of L-carnitine concentration induced by pivalic acid and valproic acid. Pharmaceutical research. 2006 Aug; 23(8):1729-35. doi: 10.1007/s11095-006-9002-9. [PMID: 16826461]
  • Toshiro Yamaguchi, Yoshitsugu Nakajima, Yutaka Nakamura. Possible mechanism for species difference on the toxicity of pivalic acid between dogs and rats. Toxicology and applied pharmacology. 2006 Jul; 214(1):61-8. doi: 10.1016/j.taap.2005.11.013. [PMID: 16430936]
  • Eric P Brass. Pivalate-generating prodrugs and carnitine homeostasis in man. Pharmacological reviews. 2002 Dec; 54(4):589-98. doi: 10.1124/pr.54.4.589. [PMID: 12429869]
  • N Okudaira, M Fujigaki, T Nakayoshi, I Komiya, Y Sugiyama. Up-regulation of carnitine transporters helps maintain tissue carnitine levels in carnitine deficiency induced by pivalic acid. Pharmaceutical research. 2001 Apr; 18(4):439-45. doi: 10.1023/a:1011042008169. [PMID: 11451029]
  • J E Abdenur, N A Chamoles, A E Guinle, A B Schenone, A N Fuertes. Diagnosis of isovaleric acidaemia by tandem mass spectrometry: false positive result due to pivaloylcarnitine in a newborn screening programme. Journal of inherited metabolic disease. 1998 Aug; 21(6):624-30. doi: 10.1023/a:1005424331822. [PMID: 9762597]
  • Q N Diep, T Bøhmer, S Skrede. Formation of pivaloylcarnitine in heart and brown adipose tissue in the rat. Biochimica et biophysica acta. 1995 Jan; 1243(1):65-70. doi: 10.1016/0304-4165(94)00129-l. [PMID: 7827109]
  • B Melegh, B Sumegi, A D Sherry. Preferential elimination of pivalate with supplemental carnitine via formation of pivaloylcarnitine in man. Xenobiotica; the fate of foreign compounds in biological systems. 1993 Nov; 23(11):1255-61. doi: 10.3109/00498259309059436. [PMID: 8310709]
  • R Fujii, S Chiba, K Numazaki, T Mori, I Terashima, H Meguro, A Mori, Y Toyonaga, K Sunakawa, Y Satoh. [Effect of cefditoren pivoxil on carnitine metabolism in pediatric patients]. The Japanese journal of antibiotics. 1993 Oct; 46(10):926-37. doi: NULL. [PMID: 8254895]
  • M Konishi, H Hashimoto. Determination of pivaloylcarnitine in human plasma and urine by high-performance liquid chromatography with fluorescence detection. Journal of pharmaceutical sciences. 1992 Oct; 81(10):1038-41. doi: 10.1002/jps.2600811017. [PMID: 1432617]
  • Y Kusunoki, K Osana, H Yoshioka. [Identification of pivaloylcarnitine in urine of patients with pivoxil therapy]. No to hattatsu = Brain and development. 1992 Sep; 24(5):494-6. doi: NULL. [PMID: 1389335]
  • K Totsuka, K Shimizu, M Konishi, S Yamamoto. Metabolism of S-1108, a new oral cephem antibiotic, and metabolic profiles of its metabolites in humans. Antimicrobial agents and chemotherapy. 1992 Apr; 36(4):757-61. doi: 10.1128/aac.36.4.757. [PMID: 1503437]
  • M Nakashima, T Uematsu, T Oguma, T Yoshida, K Mizojiri, S Matsuno, S Yamamoto. Phase I clinical studies of S-1108: safety and pharmacokinetics in a multiple-administration study with special emphasis on the influence on carnitine body stores. Antimicrobial agents and chemotherapy. 1992 Apr; 36(4):762-8. doi: 10.1128/aac.36.4.762. [PMID: 1503438]
  • B Melegh, J Kerner, L L Bieber. Pivampicillin-promoted excretion of pivaloylcarnitine in humans. Biochemical pharmacology. 1987 Oct; 36(20):3405-9. doi: 10.1016/0006-2952(87)90318-2. [PMID: 3675603]