ubiquinol-9 (BioDeep_00000359150)
代谢物信息卡片
化学式: C54H84O4 (796.6369264)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 49.05%
分子结构信息
SMILES: CC1=C(C(=C(C(=C1O)OC)OC)O)CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C
InChI: InChI=1S/C54H84O4/c1-40(2)22-14-23-41(3)24-15-25-42(4)26-16-27-43(5)28-17-29-44(6)30-18-31-45(7)32-19-33-46(8)34-20-35-47(9)36-21-37-48(10)38-39-50-49(11)51(55)53(57-12)54(58-13)52(50)56/h22,24,26,28,30,32,34,36,38,55-56H,14-21,23,25,27,29,31,33,35,37,39H2,1-13H3/b41-24+,42-26+,43-28+,44-30+,45-32+,46-34+,47-36+,48-38+
数据库引用编号
7 个数据库交叉引用编号
- ChEBI: CHEBI:84424
- PubChem: 45281170
- PubChem: 75110389
- MetaCyc: CPD-9957
- CAS: 5677-54-3
- PMhub: MS000172978
- MetaboLights: MTBLC84424
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
144 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(144)
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
9,9'-di-cis-ζ-carotene + an electron-transfer quinone ⟶ 7,9,9'-cis-neurosporene + an electron-transfer quinol
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
9,9'-di-cis-ζ-carotene + an electron-transfer quinone ⟶ 7,9,9'-cis-neurosporene + an electron-transfer quinol
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- NAD(P)/NADPH interconversion:
H2O + NADP+ ⟶ NAD+ + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- NAD/NADH phosphorylation and dephosphorylation:
NAD+ + NADPH ⟶ NADH + NADP+
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- NAD/NADH phosphorylation and dephosphorylation:
NAD+ + NADPH ⟶ NADH + NADP+
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- L-Nδ-acetylornithine biosynthesis:
2-oxoglutarate + L-ornithine ⟶ L-glutamate-5-semialdehyde + glu
- UMP biosynthesis I:
diphosphate + orotidine 5'-phosphate ⟶ PRPP + orotate
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis:
diphosphate + orotidine 5'-phosphate ⟶ PRPP + orotate
- superpathway of pyrimidine ribonucleotides de novo biosynthesis:
diphosphate + orotidine 5'-phosphate ⟶ PRPP + orotate
- NAD/NADH phosphorylation and dephosphorylation:
NAD+ + NADPH ⟶ NADH + NADP+
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- NAD/NADH phosphorylation and dephosphorylation:
H2O + NADP+ ⟶ NAD+ + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- NAD/NADH phosphorylation and dephosphorylation:
ATP + NAD+ ⟶ ADP + H+ + NADP+
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- NAD(P)/NADPH interconversion:
NAD+ + NADPH ⟶ NADH + NADP+
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- NAD/NADH phosphorylation and dephosphorylation:
ATP + NAD+ ⟶ ADP + H+ + NADP+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- NAD/NADH phosphorylation and dephosphorylation:
H2O + NADP+ ⟶ NAD+ + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- NAD(P)/NADPH interconversion:
NAD+ + NADPH ⟶ NADH + NADP+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- NAD/NADH phosphorylation and dephosphorylation:
NAD+ + NADPH ⟶ NADH + NADP+
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- aerobic respiration III (alternative oxidase pathway):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
UQH2 + an oxidized c-type cytochrome ⟶ H+ + UQ + a reduced c-type cytochrome
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- NAD/NADH phosphorylation and dephosphorylation:
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- L-Nδ-acetylornithine biosynthesis:
(S)-1-pyrroline-5-carboxylate + H+ + H2O ⟶ L-glutamate-5-semialdehyde
- L-citrulline biosynthesis:
(S)-1-pyrroline-5-carboxylate + H+ + H2O ⟶ L-glutamate-5-semialdehyde
- L-proline degradation:
(S)-1-pyrroline-5-carboxylate + H+ + H2O ⟶ L-glutamate-5-semialdehyde
- L-Nδ-acetylornithine biosynthesis:
2-oxoglutarate + L-ornithine ⟶ L-glutamate-5-semialdehyde + glu
- L-proline degradation I:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-Nδ-acetylornithine biosynthesis:
2-oxoglutarate + L-ornithine ⟶ L-glutamate-5-semialdehyde + glu
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-Nδ-acetylornithine biosynthesis:
2-oxoglutarate + L-ornithine ⟶ L-glutamate-5-semialdehyde + glu
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-Nδ-acetylornithine biosynthesis:
2-oxoglutarate + L-ornithine ⟶ L-glutamate-5-semialdehyde + glu
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-Nδ-acetylornithine biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-proline degradation I:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-Nδ-acetylornithine biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-Nδ-acetylornithine biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-Nδ-acetylornithine biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-Nδ-acetylornithine biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-Nδ-acetylornithine biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-proline degradation I:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-citrulline biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-citrulline biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-proline degradation:
H2O + L-glutamate-5-semialdehyde + NAD+ ⟶ H+ + NADH + glu
- L-citrulline biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-Nδ-acetylornithine biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-citrulline biosynthesis:
an electron-transfer quinone + pro ⟶ (S)-1-pyrroline-5-carboxylate + H+ + an electron-transfer quinol
- L-proline degradation:
an electron-transfer quinone + pro ⟶ (S)-1-pyrroline-5-carboxylate + H+ + an electron-transfer quinol
- L-Nδ-acetylornithine biosynthesis:
an electron-transfer quinone + pro ⟶ (S)-1-pyrroline-5-carboxylate + H+ + an electron-transfer quinol
- superpathway of L-citrulline metabolism:
ATP + ammonium + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + phosphate
- L-citrulline biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-citrulline biosynthesis:
H2O + arg ⟶ L-ornithine + urea
- L-citrulline biosynthesis:
H2O + gln ⟶ H+ + ammonia + glu
- L-citrulline biosynthesis:
H2O + gln ⟶ H+ + ammonia + glu
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
D-glucono-1,5-lactone + H2O ⟶ D-gluconate + H+
- glycerophosphodiester degradation:
H2O + a glycerophosphodiester ⟶ sn-glycerol 3-phosphate + H+ + an alcohol
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- UMP biosynthesis I:
ATP + H2O + gln + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + glu + phosphate
- superpathway of pyrimidine ribonucleotides de novo biosynthesis:
ATP + H2O + gln + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + glu + phosphate
- NAD/NADH phosphorylation and dephosphorylation:
H+ + NADH + UQ ⟶ H+ + NAD+ + UQH2
- aerobic respiration I (cytochrome c):
UQH2 + an oxidized c-type cytochrome ⟶ H+ + UQ + a reduced c-type cytochrome
- methylglyoxal degradation I:
(R)-S-lactoylglutathione ⟶ glutathione + methylglyoxal
- L-lysine degradation I:
5-aminopentanal + H2O + NAD+ ⟶ 5-aminopentanoate + H+ + NADH
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + an electron-transfer quinone ⟶ DHAP + an electron-transfer quinol
- aerobic respiration III (alternative oxidase pathway):
O2 + UQH2 ⟶ H2O + UQ
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis:
ATP + H2O + gln + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + glu + phosphate
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a (2E)-2-enoyl-CoA + hydrogen peroxide
- NAD/NADH phosphorylation and dephosphorylation:
NAD+ + NADPH ⟶ NADH + NADP+
- glycerol degradation I:
ATP + glycerol ⟶ sn-glycerol 3-phosphate + ADP + H+
- glycerol-3-phosphate shuttle:
sn-glycerol 3-phosphate + NAD+ ⟶ DHAP + H+ + NADH
- UMP biosynthesis I:
(S)-dihydroorotate + an electron-transfer quinone ⟶ an electron-transfer quinol + orotate
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis:
(S)-dihydroorotate + an electron-transfer quinone ⟶ an electron-transfer quinol + orotate
- aerobic respiration I (cytochrome c):
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of glyoxylate cycle and fatty acid degradation:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- methylglyoxal degradation I:
(R)-lactate + UQ ⟶ UQH2 + pyruvate
- aerobic respiration III (alternative oxidase pathway):
UQ + succinate ⟶ UQH2 + fumarate
- superpathway of pyrimidine ribonucleotides de novo biosynthesis:
(S)-dihydroorotate + an electron-transfer quinone ⟶ an electron-transfer quinol + orotate
- glycerophosphodiester degradation:
H2O + a glycerophosphodiester ⟶ sn-glycerol 3-phosphate + H+ + an alcohol
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Youssef W Naguib, Sanjib Saha, Jessica M Skeie, Timothy Acri, Kareem Ebeid, Somaya Abdel-Rahman, Sandeep Kesh, Gregory A Schmidt, Darryl Y Nishimura, Jeffrey A Banas, Min Zhu, Mark A Greiner, Aliasger K Salem. Solubilized ubiquinol for preserving corneal function.
Biomaterials.
2021 08; 275(?):120842. doi:
10.1016/j.biomaterials.2021.120842
. [PMID: 34087583] - Mathias J Holmberg, Lars W Andersen, Ari Moskowitz, Katherine M Berg, Michael N Cocchi, Maureen Chase, Xiaowen Liu, Duncan M Kuhn, Anne V Grossestreuer, Anne Kirstine Hoeyer-Nielsen, Hans Kirkegaard, Michael W Donnino. Ubiquinol (reduced coenzyme Q10) as a metabolic resuscitator in post-cardiac arrest: A randomized, double-blind, placebo-controlled trial.
Resuscitation.
2021 05; 162(?):388-395. doi:
10.1016/j.resuscitation.2021.01.041
. [PMID: 33577964] - Agustin J Ruiz, Ahmed Tibary, Robert A Heaton, Iain P Hargreaves, Desmond P Leadon, Warwick M Bayly. Effects of Feeding Coenzyme Q10-Ubiquinol on Plasma Coenzyme Q10 Concentrations and Semen Quality in Stallions.
Journal of equine veterinary science.
2021 01; 96(?):103303. doi:
10.1016/j.jevs.2020.103303
. [PMID: 33349408] - Francesca Cateni, Marina Zacchigna, Giuseppe Procida. Synthesis and controlled drug delivery studies of a novel Ubiquinol-Polyethylene glycol-Vitamin E adduct.
Bioorganic chemistry.
2020 12; 105(?):104329. doi:
10.1016/j.bioorg.2020.104329
. [PMID: 33068813] - Patrick Orlando, Jacopo Sabbatinelli, Sonia Silvestri, Fabio Marcheggiani, Ilenia Cirilli, Phiwayinkosi Vusi Dludla, Alberto Molardi, Francesco Nicolini, Luca Tiano. Ubiquinol supplementation in elderly patients undergoing aortic valve replacement: biochemical and clinical aspects.
Aging.
2020 07; 12(15):15514-15531. doi:
10.18632/aging.103742
. [PMID: 32741773] - Louise Injarabian, Marc Scherlinger, Anne Devin, Stéphane Ransac, Jens Lykkesfeldt, Benoit S Marteyn. Ascorbate maintains a low plasma oxygen level.
Scientific reports.
2020 06; 10(1):10659. doi:
10.1038/s41598-020-67778-w
. [PMID: 32606354] - Kei Mizuno, Akihiro T Sasaki, Kyosuke Watanabe, Yasuyoshi Watanabe. Ubiquinol-10 Intake Is Effective in Relieving Mild Fatigue in Healthy Individuals.
Nutrients.
2020 Jun; 12(6):. doi:
10.3390/nu12061640
. [PMID: 32498248] - Jacopo Sabbatinelli, Patrick Orlando, Roberta Galeazzi, Sonia Silvestri, Ilenia Cirilli, Fabio Marcheggiani, Phiwayinkosi V Dludla, Angelica Giuliani, Anna Rita Bonfigli, Laura Mazzanti, Fabiola Olivieri, Roberto Antonicelli, Luca Tiano. Ubiquinol Ameliorates Endothelial Dysfunction in Subjects with Mild-to-Moderate Dyslipidemia: A Randomized Clinical Trial.
Nutrients.
2020 Apr; 12(4):. doi:
10.3390/nu12041098
. [PMID: 32326664] - Enyong Dai, Wenlong Zhang, Dan Cong, Rui Kang, Jing Wang, Daolin Tang. AIFM2 blocks ferroptosis independent of ubiquinol metabolism.
Biochemical and biophysical research communications.
2020 03; 523(4):966-971. doi:
10.1016/j.bbrc.2020.01.066
. [PMID: 31964528] - T N Fedorova, V S Gusakov, A A Devyatov, O A Muzichuk, A V Lopachev, M A Belousova, S L Stvolinskii, O V Povarova, M V Gulyaev, O S Medvedev, V A Tutelyan. [Neuroprotective mechanisms of the ubiquinol action in experimental focal ischemia].
Biomeditsinskaia khimiia.
2020 Feb; 66(2):145-150. doi:
10.18097/pbmc20206602145
. [PMID: 32420895] - Anna Gvozdjáková, Jarmila Kucharská, Branislav Kura, Ol'ga Vančová, Zuzana Rausová, Zuzana Sumbalová, Ol'ga Uličná, Ján Slezák. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.
Canadian journal of physiology and pharmacology.
2020 Jan; 98(1):29-34. doi:
10.1139/cjpp-2019-0281
. [PMID: 31536712] - Huan-Chieh Chen, Chi-Chang Huang, Tien-Jen Lin, Mei-Chich Hsu, Yi-Ju Hsu. Ubiquinol Supplementation Alters Exercise Induced Fatigue by Increasing Lipid Utilization in Mice.
Nutrients.
2019 Oct; 11(11):. doi:
10.3390/nu11112550
. [PMID: 31652711] - Guillermo López-Lluch, Jesús Del Pozo-Cruz, Ana Sánchez-Cuesta, Ana Belén Cortés-Rodríguez, Plácido Navas. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization.
Nutrition (Burbank, Los Angeles County, Calif.).
2019 01; 57(?):133-140. doi:
10.1016/j.nut.2018.05.020
. [PMID: 30153575] - Sho Suzuki, Takuji Gotoda, Chika Kusano, Hisatomo Ikehara, Yo Miyakoshi, Kenji Fujii. Effect of Ubiquinol Intake on Defecation Frequency and Stool Form: A Prospective, Double-Blinded, Randomized Control Study.
Journal of medicinal food.
2019 Jan; 22(1):81-86. doi:
10.1089/jmf.2018.4233
. [PMID: 30192695] - Patrick Orlando, Sonia Silvestri, Roberta Galeazzi, Roberto Antonicelli, Fabio Marcheggiani, Ilenia Cirilli, Tiziana Bacchetti, Luca Tiano. Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes.
Redox report : communications in free radical research.
2018 Dec; 23(1):136-145. doi:
10.1080/13510002.2018.1472924
. [PMID: 29734881] - Ying Zhang, Jin Liu, Xiao-Qiang Chen, C-Y Oliver Chen. Ubiquinol is superior to ubiquinone to enhance Coenzyme Q10 status in older men.
Food & function.
2018 Nov; 9(11):5653-5659. doi:
10.1039/c8fo00971f
. [PMID: 30302465] - Fong-Lin Chen, Po-Sheng Chang, Yi-Chin Lin, Ping-Ting Lin. A Pilot Clinical Study of Liquid Ubiquinol Supplementation on Cardiac Function in Pediatric Dilated Cardiomyopathy.
Nutrients.
2018 Nov; 10(11):. doi:
10.3390/nu10111697
. [PMID: 30405022] - Javier Frontiñán-Rubio, Francisco J Sancho-Bielsa, Juan R Peinado, Frank M LaFerla, Lydia Giménez-Llort, Mario Durán-Prado, Francisco J Alcain. Sex-dependent co-occurrence of hypoxia and β-amyloid plaques in hippocampus and entorhinal cortex is reversed by long-term treatment with ubiquinol and ascorbic acid in the 3 × Tg-AD mouse model of Alzheimer's disease.
Molecular and cellular neurosciences.
2018 10; 92(?):67-81. doi:
10.1016/j.mcn.2018.06.005
. [PMID: 29953929] - Chi-Hua Yen, Ying-Ju Chu, Bor-Jen Lee, Yi-Chin Lin, Ping-Ting Lin. Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: a double-blind, randomised, placebo-controlled trial.
The British journal of nutrition.
2018 07; 120(1):57-63. doi:
10.1017/s0007114518001241
. [PMID: 29936921] - A V Kalatanova, V G Makarov, N M Faustova, Ya I Gushchin, M N Makarova. [Evaluation of the cardioprotective effect of ubiquinol on the model of reperfusion injury of rat myocardium].
Biomeditsinskaia khimiia.
2018 Mar; 64(2):188-194. doi:
10.18097/pbmc20186402188
. [PMID: 29723149] - Jun Mitsui, Ken Koguchi, Toshimitsu Momose, Miwako Takahashi, Takashi Matsukawa, Tsutomu Yasuda, Shin-Ichi Tokushige, Hiroyuki Ishiura, Jun Goto, Shigeaki Nakazaki, Tomoyoshi Kondo, Hidefumi Ito, Yorihiro Yamamoto, Shoji Tsuji. Three-Year Follow-Up of High-Dose Ubiquinol Supplementation in a Case of Familial Multiple System Atrophy with Compound Heterozygous COQ2 Mutations.
Cerebellum (London, England).
2017 06; 16(3):664-672. doi:
10.1007/s12311-017-0846-9
. [PMID: 28150130] - Xiehuang Sheng, Chao Shan, Jianbiao Liu, Jintong Yang, Bin Sun, Dezhan Chen. Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1.
Physical chemistry chemical physics : PCCP.
2017 May; 19(20):13153-13159. doi:
10.1039/c7cp00804j
. [PMID: 28489094] - Alvaro Sarmiento, Javier Diaz-Castro, Mario Pulido-Moran, Jorge Moreno-Fernandez, Naroa Kajarabille, Ignacio Chirosa, Isabel M Guisado, Luis Javier Chirosa, Rafael Guisado, Julio J Ochoa. Short-term ubiquinol supplementation reduces oxidative stress associated with strenuous exercise in healthy adults: A randomized trial.
BioFactors (Oxford, England).
2016 Nov; 42(6):612-622. doi:
10.1002/biof.1297
. [PMID: 27193497] - Alexandra Fischer, Simone Onur, Petra Niklowitz, Thomas Menke, Matthias Laudes, Frank Döring. Coenzyme Q10 redox state predicts the concentration of c-reactive protein in a large caucasian cohort.
BioFactors (Oxford, England).
2016 May; 42(3):268-76. doi:
10.1002/biof.1269
. [PMID: 26910885] - Michael W Donnino, Sharri J Mortensen, Lars W Andersen, Maureen Chase, Katherine M Berg, Julia Balkema, Jeejabai Radhakrishnan, Raúl J Gazmuri, Xiaowen Liu, Michael N Cocchi. Ubiquinol (reduced Coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial.
Critical care (London, England).
2015 Jul; 19(?):275. doi:
10.1186/s13054-015-0989-3
. [PMID: 26130237] - Yvonne Y Clark, Loren E Wold, Laura A Szalacha, Donna O McCarthy. Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice.
Biological research for nursing.
2015 May; 17(3):321-9. doi:
10.1177/1099800414543822
. [PMID: 25230747] - Simone Onur, Petra Niklowitz, Gunnar Jacobs, Wolfgang Lieb, Thomas Menke, Frank Döring. Association between serum level of ubiquinol and NT-proBNP, a marker for chronic heart failure, in healthy elderly subjects.
BioFactors (Oxford, England).
2015 Jan; 41(1):35-43. doi:
10.1002/biof.1198
. [PMID: 25728634] - Simone Onur, Petra Niklowitz, Gunnar Jacobs, Ute Nöthlings, Wolfgang Lieb, Thomas Menke, Frank Döring. Ubiquinol reduces gamma glutamyltransferase as a marker of oxidative stress in humans.
BMC research notes.
2014 Jul; 7(?):427. doi:
10.1186/1756-0500-7-427
. [PMID: 24996614] - Paul Bennetts, Qiuhua Shen, Amanda R Thimmesch, Francisco J Diaz, Richard L Clancy, Janet D Pierce. Effects of ubiquinol with fluid resuscitation following haemorrhagic shock on rat lungs, diaphragm, heart and kidneys.
Experimental physiology.
2014 Jul; 99(7):1007-15. doi:
10.1113/expphysiol.2014.078600
. [PMID: 24860150] - W Peerapanyasut, K Thamprasert, O Wongmekiat. Ubiquinol supplementation protects against renal ischemia and reperfusion injury in rats.
Free radical research.
2014 Feb; 48(2):180-9. doi:
10.3109/10715762.2013.858148
. [PMID: 24151980] - Anna Gvozdjáková, Jarmila Kucharská, Daniela Ostatníková, Katarína Babinská, Dalibor Nakládal, Fred L Crane. Ubiquinol improves symptoms in children with autism.
Oxidative medicine and cellular longevity.
2014; 2014(?):798957. doi:
10.1155/2014/798957
. [PMID: 24707344] - Jinfeng Qu, Li Ma, Junhua Zhang, Steffen Jockusch, Ilyas Washington. Dietary chlorophyll metabolites catalyze the photoreduction of plasma ubiquinone.
Photochemistry and photobiology.
2013 Mar; 89(2):310-3. doi:
10.1111/j.1751-1097.2012.01230.x
. [PMID: 22928808] - Jacopo Lucchetti, Marianna Marino, Simonetta Papa, Massimo Tortarolo, Giovanna Guiso, Silvia Pozzi, Valentina Bonetto, Silvio Caccia, Ettore Beghi, Caterina Bendotti, Marco Gobbi. A mouse model of familial ALS has increased CNS levels of endogenous ubiquinol9/10 and does not benefit from exogenous administration of ubiquinol10.
PloS one.
2013; 8(7):e69540. doi:
10.1371/journal.pone.0069540
. [PMID: 23936040] - Mohammad Reza Safarinejad, Shiva Safarinejad, Nayyer Shafiei, Saba Safarinejad. Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: a double-blind, placebo controlled, randomized study.
The Journal of urology.
2012 Aug; 188(2):526-31. doi:
10.1016/j.juro.2012.03.131
. [PMID: 22704112] - Akira Ishikawa, Yukio Homma. Beneficial effect of ubiquinol, the reduced form of coenzyme Q10, on cyclosporine nephrotoxicity.
International braz j urol : official journal of the Brazilian Society of Urology.
2012 Mar; 38(2):230-4; discussion 234. doi:
10.1590/s1677-55382012000200011
. [PMID: 22555041] - Kensuke Toyama, Seigo Sugiyama, Hideki Oka, Yuri Iwasaki, Hitoshi Sumida, Tomoko Tanaka, Shinji Tayama, Hideaki Jinnouchi, Kunihiko Matsui, Hisao Ogawa. Rosuvastatin combined with regular exercise preserves coenzyme Q10 levels associated with a significant increase in high-density lipoprotein cholesterol in patients with coronary artery disease.
Atherosclerosis.
2011 Jul; 217(1):158-64. doi:
10.1016/j.atherosclerosis.2011.02.050
. [PMID: 21458815] - Akira Ishikawa, Hiroo Kawarazaki, Katsuyuki Ando, Megumi Fujita, Toshiro Fujita, Yukio Homma. Renal preservation effect of ubiquinol, the reduced form of coenzyme Q10.
Clinical and experimental nephrology.
2011 Feb; 15(1):30-3. doi:
10.1007/s10157-010-0350-8
. [PMID: 20878200] - Constance Schmelzer, Petra Niklowitz, Jürgen G Okun, Dorothea Haas, Thomas Menke, Frank Döring. Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans.
IUBMB life.
2011 Jan; 63(1):42-8. doi:
10.1002/iub.413
. [PMID: 21280176] - Masayo Matsuzaki, Megumi Haruna, Yoko Hasumi, Kyouichi Sekine, Takashi Tanizaki, Etsuko Watanabe, Sachiyo Murashima. Ubiquinol-10 and ubiquinone-10 levels in umbilical cord blood of healthy foetuses and the venous blood of their mothers.
Free radical research.
2010 Nov; 44(11):1338-44. doi:
10.3109/10715762.2010.503758
. [PMID: 20815779] - Ulrika Forsman, Mats Sjöberg, Mikael Turunen, Pavel J Sindelar. 4-Nitrobenzoate inhibits coenzyme Q biosynthesis in mammalian cell cultures.
Nature chemical biology.
2010 Jul; 6(7):515-7. doi:
10.1038/nchembio.372
. [PMID: 20526342] - Yasutoshi Kido, Kimitoshi Sakamoto, Kosuke Nakamura, Michiyo Harada, Takashi Suzuki, Yoshisada Yabu, Hiroyuki Saimoto, Fumiyuki Yamakura, Daijiro Ohmori, Anthony Moore, Shigeharu Harada, Kiyoshi Kita. Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei.
Biochimica et biophysica acta.
2010 Apr; 1797(4):443-50. doi:
10.1016/j.bbabio.2009.12.021
. [PMID: 20056101] - G Balercia, A Mancini, F Paggi, L Tiano, A Pontecorvi, M Boscaro, A Lenzi, G P Littarru. Coenzyme Q10 and male infertility.
Journal of endocrinological investigation.
2009 Jul; 32(7):626-32. doi:
10.1007/bf03346521
. [PMID: 19509475] - Michael V Miles, Peter H Tang, Lili Miles, Paul E Steele, Mark J Moye, Paul S Horn. Validation and application of an HPLC-EC method for analysis of coenzyme Q10 in blood platelets.
Biomedical chromatography : BMC.
2008 Dec; 22(12):1403-8. doi:
10.1002/bmc.1072
. [PMID: 18655217] - Aya Hirayama, Hiroshi Kubo, Masashi Mita, Osamu Shirota, Yorihiro Yamamoto. High-sensitivity simultaneous analysis of ubiquinol-10 and ubiquinone-10 in human plasma.
Journal of chromatographic science.
2008 Sep; 46(8):717-21. doi:
10.1093/chromsci/46.8.717
. [PMID: 18796229] - Mitsuaki Kitano, Dai Watanabe, Shigehito Oda, Hiroshi Kubo, Hideyuki Kishida, Kenji Fujii, Mikio Kitahara, Kazunori Hosoe. Subchronic oral toxicity of ubiquinol in rats and dogs.
International journal of toxicology.
2008 Mar; 27(2):189-215. doi:
10.1080/10915810801978060
. [PMID: 18404543] - Kazuo Mukai, Aiko Tokunaga, Shingo Itoh, Yu Kanesaki, Aya Ouchi, Keishi Ohara, Shin-ichi Nagaoka, Kouichi Abe. Comparison between the free-radical-scavenging activities with vitamin E and ubiquinol in biological systems based on their reaction rates: a research account.
BioFactors (Oxford, England).
2008; 32(1-4):49-58. doi:
10.1002/biof.5520320107
. [PMID: 19096100] - Peter H Langsjoen, Alena M Langsjoen. Supplemental ubiquinol in patients with advanced congestive heart failure.
BioFactors (Oxford, England).
2008; 32(1-4):119-28. doi:
10.1002/biof.5520320114
. [PMID: 19096107] - Haruo Shimada, David Kodjabachian, Masami Ishida. Specific and rapid analysis of ubiquinones using Craven's reaction and HPLC with postcolumn derivatization.
Journal of lipid research.
2007 Sep; 48(9):2079-85. doi:
10.1194/jlr.d700006-jlr200
. [PMID: 17579247] - Adarsh Kumar, Ram B Singh, Manoj Saxena, Mohammad A Niaz, Shashank R Josh, Pronobesh Chattopadhyay, Viola Mechirova, Daniel Pella, Jan Fedacko. Effect of carni Q-gel (ubiquinol and carnitine) on cytokines in patients with heart failure in the Tishcon study.
Acta cardiologica.
2007 Aug; 62(4):349-54. doi:
10.2143/ac.62.4.2022278
. [PMID: 17824295] - Hemmi N Bhagavan, Raj K Chopra. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations.
Mitochondrion.
2007 Jun; 7 Suppl(?):S78-88. doi:
10.1016/j.mito.2007.03.003
. [PMID: 17482886] - Kazunori Hosoe, Mitsuaki Kitano, Hideyuki Kishida, Hiroshi Kubo, Kenji Fujii, Mikio Kitahara. Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers.
Regulatory toxicology and pharmacology : RTP.
2007 Feb; 47(1):19-28. doi:
10.1016/j.yrtph.2006.07.001
. [PMID: 16919858] - Tsuyoshi Sugio, Tomohiro Hisazumi, Tadayoshi Kanao, Kazuo Kamimura, Fumiaki Takeuchi, Atsunori Negishi. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.
Bioscience, biotechnology, and biochemistry.
2006 Jul; 70(7):1584-91. doi:
10.1271/bbb.50623
. [PMID: 16861791] - Yasukazu Yoshida, Nanako Itoh, Mieko Hayakawa, Rosaria Piga, Osamu Cynshi, Kou-ichi Jishage, Etsuo Niki. Lipid peroxidation induced by carbon tetrachloride and its inhibition by antioxidant as evaluated by an oxidative stress marker, HODE.
Toxicology and applied pharmacology.
2005 Oct; 208(1):87-97. doi:
10.1016/j.taap.2005.01.015
. [PMID: 16164964] - Michael V Miles, Paul S Horn, Peter H Tang, John A Morrison, Lili Miles, Ton DeGrauw, Amadeo J Pesce. Age-related changes in plasma coenzyme Q10 concentrations and redox state in apparently healthy children and adults.
Clinica chimica acta; international journal of clinical chemistry.
2004 Sep; 347(1-2):139-44. doi:
10.1016/j.cccn.2004.04.003
. [PMID: 15313151] - Michael V Miles, John A Morrison, Paul S Horn, Peter H Tang, Amadeo J Pesce. Coenzyme Q10 changes are associated with metabolic syndrome.
Clinica chimica acta; international journal of clinical chemistry.
2004 Jun; 344(1-2):173-9. doi:
10.1016/j.cccn.2004.02.016
. [PMID: 15149886] - Carsten Buhmann, Sönke Arlt, Anatol Kontush, Tobias Möller-Bertram, Sinje Sperber, Matthias Oechsner, Hans Joerg Stuerenburg, Ulrike Beisiegel. Plasma and CSF markers of oxidative stress are increased in Parkinson's disease and influenced by antiparkinsonian medication.
Neurobiology of disease.
2004 Feb; 15(1):160-70. doi:
10.1016/j.nbd.2003.10.003
. [PMID: 14751781] - S F Martín, C Gómez-Díaz, R I Bello, P Navas, J M Villalba. Inhibition of neutral Mg2+-dependent sphingomyelinase by ubiquinol-mediated plasma membrane electron transport.
Protoplasma.
2003 May; 221(1-2):109-16. doi:
10.1007/s00709-002-0070-3
. [PMID: 12768348] - Ludmila Korkina, Irina Deeva, Galina Ibragimova, Alexander Shakula, Antonio Luci, Chiara De Luca. Coenzyme Q10-containing composition (Immugen) protects against occupational and environmental stress in workers of the gas and oil industry.
BioFactors (Oxford, England).
2003; 18(1-4):245-54. doi:
10.1002/biof.5520180227
. [PMID: 14695940] - M P C Hectors, L J H van Tits, Y B de Rijke, P N M Demacker. Stability studies of ubiquinol in plasma.
Annals of clinical biochemistry.
2003 Jan; 40(Pt 1):100-1. doi:
10.1258/000456303321016240
. [PMID: 12542918] - Siro Passi, Andrea Stancato, Enrico Aleo, Anna Dmitrieva, Gian Paolo Littarru. Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA.
BioFactors (Oxford, England).
2003; 18(1-4):113-24. doi:
10.1002/biof.5520180213
. [PMID: 14695926] - Sergio F Martín, Consuelo Gómez-Díaz, Plácido Navas, José M Villalba. Ubiquinol inhibition of neutral sphingomyelinase in liver plasma membrane: specific inhibition of the Mg(2+)-dependent enzyme and role of isoprenoid chain.
Biochemical and biophysical research communications.
2002 Sep; 297(3):581-6. doi:
10.1016/s0006-291x(02)02222-2
. [PMID: 12270134] - Milena Merlo Pich, Alida Castagnoli, Annalisa Biondi, Andrea Bernacchia, Pier Luigi Tazzari, Marilena D'Aurelio, Giovanna Parenti Castelli, Gabriella Formiggini, Roberto Conte, Carla Bovina, Giorgio Lenaz. Ubiquinol and a coenzyme Q reducing system protect platelet mitochondrial function of transfusional buffy coats from oxidative stress.
Free radical research.
2002 Apr; 36(4):429-36. doi:
10.1080/10715760290021289
. [PMID: 12069107] - W A Oranje, J P Sels, G J Rondas-Colbers, P J Lemmens, B H Wolffenbuttel. Effect of atorvastatin on LDL oxidation and antioxidants in normocholesterolemic type 2 diabetic patients.
Clinica chimica acta; international journal of clinical chemistry.
2001 Sep; 311(2):91-4. doi:
10.1016/s0009-8981(01)00549-6
. [PMID: 11566168] - S F Martín, F Navarro, N Forthoffer, P Navas, J M Villalba. Neutral magnesium-dependent sphingomyelinase from liver plasma membrane: purification and inhibition by ubiquinol.
Journal of bioenergetics and biomembranes.
2001 Apr; 33(2):143-53. doi:
10.1023/a:1010704715979
. [PMID: 11456220] - M Podda, T M Zollner, M Grundmann-Kollmann, J J Thiele, L Packer, R Kaufmann. Activity of alpha-lipoic acid in the protection against oxidative stress in skin.
Current problems in dermatology.
2001; 29(?):43-51. doi:
10.1159/000060652
. [PMID: 11225200] - K Kamimura, S Fujii, T Sugio. Purification and some properties of ubiquinol oxidase from obligately chemolithotrophic iron-oxidizing bacterium, Thiobacillus ferrooxidans NASF-1.
Bioscience, biotechnology, and biochemistry.
2001 Jan; 65(1):63-71. doi:
10.1271/bbb.65.63
. [PMID: 11272847] - J Liu, H C Yeo, E Overvik-Douki, T Hagen, S J Doniger, D W Chyu, G A Brooks, B N Ames, D W Chu. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants.
Journal of applied physiology (Bethesda, Md. : 1985).
2000 Jul; 89(1):21-8. doi:
10.1152/jappl.2000.89.1.21
. [PMID: 10904031] - J Reichenbach, R Schubert, C Schwan, K Müller, H J Böhles, S Zielen. Antioxidative capacity in patients with common variable immunodeficiency.
Journal of clinical immunology.
2000 May; 20(3):221-6. doi:
10.1023/a:1006645731813
. [PMID: 10941831] - L Gille, H Nohl. The existence of a lysosomal redox chain and the role of ubiquinone.
Archives of biochemistry and biophysics.
2000 Mar; 375(2):347-54. doi:
10.1006/abbi.1999.1649
. [PMID: 10700391] - J Reichenbach, R Schubert, C Schwan, K Müller, H J Böhles, S Zielen. Anti-oxidative capacity in patients with ataxia telangiectasia.
Clinical and experimental immunology.
1999 Sep; 117(3):535-9. doi:
10.1046/j.1365-2249.1999.01000.x
. [PMID: 10469059] - Q Wang, B L Lee, C N Ong. Automated high-performance liquid chromatographic method with precolumn reduction for the determination of ubiquinol and ubiquinone in human plasma.
Journal of chromatography. B, Biomedical sciences and applications.
1999 Apr; 726(1-2):297-302. doi:
10.1016/s0378-4347(99)00067-5
. [PMID: 10348199] - Y Yamamoto, S Yamashita. Plasma ubiquinone to ubiquinol ratio in patients with hepatitis, cirrhosis, and hepatoma, and in patients treated with percutaneous transluminal coronary reperfusion.
BioFactors (Oxford, England).
1999; 9(2-4):241-6. doi:
10.1002/biof.5520090219
. [PMID: 10416036] - J Kaikkonen, L Kosonen, K Nyyssönen, E Porkkala-Sarataho, R Salonen, H Korpela, J T Salonen. Effect of combined coenzyme Q10 and d-alpha-tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage: a placebo-controlled double-blind study in marathon runners.
Free radical research.
1998 Jul; 29(1):85-92. doi:
10.1080/10715769800300101
. [PMID: 9733025] - A Palomäki, K Malminiemi, T Metsä-Ketelä. Enhanced oxidizability of ubiquinol and alpha-tocopherol during lovastatin treatment.
FEBS letters.
1997 Jun; 410(2-3):254-8. doi:
10.1016/s0014-5793(97)00609-1
. [PMID: 9237640] - J Lagendijk, J B Ubbink, R Delport, W J Vermaak, J A Human. Ubiquinol/ubiquinone ratio as marker of oxidative stress in coronary artery disease.
Research communications in molecular pathology and pharmacology.
1997 Jan; 95(1):11-20. doi:
NULL
. [PMID: 9055345] - M G McDonnell, G P Archbold. Plasma ubiquinol/cholesterol ratios in patients with hyperlipidaemia, those with diabetes mellitus and in patients requiring dialysis.
Clinica chimica acta; international journal of clinical chemistry.
1996 Sep; 253(1-2):117-26. doi:
10.1016/0009-8981(96)06357-7
. [PMID: 8879843] - T Takahashi, N Sugimoto, K Takahata, T Okamoto, T Kishi. Cellular antioxidant defense by a ubiquinol-regenerating system coupled with cytosolic NADPH-dependent ubiquinone reductase: protective effect against carbon tetrachloride-induced hepatotoxicity in the rat.
Biological & pharmaceutical bulletin.
1996 Aug; 19(8):1005-12. doi:
10.1248/bpb.19.1005
. [PMID: 8874805] - M Podda, C Weber, M G Traber, L Packer. Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones.
Journal of lipid research.
1996 Apr; 37(4):893-901. doi:
. [PMID: 8732789]
- K Lönnrot, T Metsä-Ketelä, G Molnár, J P Ahonen, M Latvala, J Peltola, T Pietilä, H Alho. The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity.
Free radical biology & medicine.
1996; 21(2):211-7. doi:
10.1016/0891-5849(95)02207-4
. [PMID: 8818636] - C Santos-Ocaña, P Navas, F L Crane, F Córdoba. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.
Journal of bioenergetics and biomembranes.
1995 Dec; 27(6):597-603. doi:
10.1007/bf02111657
. [PMID: 8746846] - B van de Water, J P Zoeteweij, H J de Bont, J F Nagelkerke. Inhibition of succinate:ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury.
Molecular pharmacology.
1995 Nov; 48(5):928-37. doi:
. [PMID: 7476924]
- L Ernster, G Dallner. Biochemical, physiological and medical aspects of ubiquinone function.
Biochimica et biophysica acta.
1995 May; 1271(1):195-204. doi:
10.1016/0925-4439(95)00028-3
. [PMID: 7599208] - B Dresow, C Albert, I Zimmermann, P Nielsen. Ethane exhalation and vitamin E/ubiquinol status as markers of lipid peroxidation in ferrocene iron-loaded rats.
Hepatology (Baltimore, Md.).
1995 Apr; 21(4):1099-105. doi:
10.1002/hep.1840210432
. [PMID: 7705785] - U M Marinari, M A Pronzato, D Dapino, P Gazzo, N Traverso, D Cottalasso, P Odetti. Effects of simvastatin on liver and plasma levels of cholesterol, dolichol and ubiquinol in hypercholesterolemic rats.
The Italian journal of biochemistry.
1995 Jan; 44(1):1-9. doi:
NULL
. [PMID: 7797420] - P A Motchnik, B Frei, B N Ames. Measurement of antioxidants in human blood plasma.
Methods in enzymology.
1994; 234(?):269-79. doi:
10.1016/0076-6879(94)34094-3
. [PMID: 7808294] - C Weber, T S Jakobsen, S A Mortensen, G Paulsen, G Hølmer. Effect of dietary coenzyme Q10 as an antioxidant in human plasma.
Molecular aspects of medicine.
1994; 15 Suppl(?):s97-102. doi:
10.1016/0098-2997(94)90018-3
. [PMID: 7752850] - T Takahashi, T Okamoto, K Mori, H Sayo, T Kishi. Distribution of ubiquinone and ubiquinol homologues in rat tissues and subcellular fractions.
Lipids.
1993 Sep; 28(9):803-9. doi:
10.1007/bf02536234
. [PMID: 8231656] - L Ernster, P Forsmark-Andrée. Ubiquinol: an endogenous antioxidant in aerobic organisms.
The Clinical investigator.
1993; 71(8 Suppl):S60-5. doi:
10.1007/bf00226842
. [PMID: 8241707] - T Takahashi, M Shitashige, T Okamoto, T Kishi, K Goshima. A novel ubiquinone reductase activity in rat cytosol.
FEBS letters.
1992 Dec; 314(3):331-4. doi:
10.1016/0014-5793(92)81499-c
. [PMID: 1468565] - R Stocker, V W Bowry, B Frei. Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol.
Proceedings of the National Academy of Sciences of the United States of America.
1991 Mar; 88(5):1646-50. doi:
10.1073/pnas.88.5.1646
. [PMID: 2000375] - Y Yamamoto, E Niki. Presence of cholesteryl ester hydroperoxide in human blood plasma.
Biochemical and biophysical research communications.
1989 Dec; 165(3):988-93. doi:
10.1016/0006-291x(89)92700-9
. [PMID: 2610703] - B Frei, Y Yamamoto, D Niclas, B N Ames. Evaluation of an isoluminol chemiluminescence assay for the detection of hydroperoxides in human blood plasma.
Analytical biochemistry.
1988 Nov; 175(1):120-30. doi:
10.1016/0003-2697(88)90369-7
. [PMID: 3245562] - T Okamoto, Y Fukunaga, Y Ida, T Kishi. Determination of reduced and total ubiquinones in biological materials by liquid chromatography with electrochemical detection.
Journal of chromatography.
1988 Aug; 430(1):11-9. doi:
10.1016/s0378-4347(00)83129-1
. [PMID: 3215946] - J K Lang, K Gohil, L Packer. Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions.
Analytical biochemistry.
1986 Aug; 157(1):106-16. doi:
10.1016/0003-2697(86)90203-4
. [PMID: 3766953] - A Craske, S J Ferguson. The respiratory nitrate reductase from Paracoccus denitrificans. Molecular characterisation and kinetic properties.
European journal of biochemistry.
1986 Jul; 158(2):429-36. doi:
10.1111/j.1432-1033.1986.tb09771.x
. [PMID: 3732277]