Sedoheptulose (BioDeep_00000354008)
Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C7H14O7 (210.0739494)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 6.06%
分子结构信息
SMILES: C(C(C(C(C(C(=O)CO)O)O)O)O)O
InChI: InChI=1S/C7H14O7/c8-1-3(10)5(12)7(14)6(13)4(11)2-9/h3,5-10,12-14H,1-2H2/t3-,5-,6-,7-/m1/s1
数据库引用编号
14 个数据库交叉引用编号
- ChEBI: CHEBI:16802
- PubChem: 5459879
- PubChem: 76476942
- CAS: 3019-74-7
- CAS: 470-46-2
- MoNA: HMDB0003219_ms_ms_2213
- MoNA: HMDB0003219_ms_ms_2212
- MoNA: HMDB0003219_ms_ms_2214
- PMhub: MS000161560
- RefMet: Sedoheptulose
- KEGG: C02076
- PubChem: 5162
- KNApSAcK: 167607
- LOTUS: LTS0195316
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
30 个相关的代谢反应过程信息。
Reactome(30)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
L-gulonate + NAD ⟶ 3-dehydro-L-gulonate + H+ + NADH
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
ATP + R5P ⟶ AMP + PRPP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
PDG + TPN ⟶ H+ + RU5P + TPNH + carbon dioxide
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
20 个相关的物种来源信息
- 3481 - Cannabaceae: LTS0195316
- 3482 - Cannabis: LTS0195316
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0195316
- 3459 - Coriaria: LTS0195316
- 79757 - Coriaria japonica: 10.1248/YAKUSHI1947.88.10_1329
- 79757 - Coriaria japonica: LTS0195316
- 3458 - Coriariaceae: LTS0195316
- 2759 - Eukaryota: LTS0195316
- 3398 - Magnoliopsida: LTS0195316
- 2201384 - Micromeles: LTS0195316
- 1770156 - Micromeles japonica: LTS0195316
- 3468 - Papaver: LTS0195316
- 3469 - Papaver somniferum: 10.3891/ACTA.CHEM.SCAND.24-1262
- 3469 - Papaver somniferum: LTS0195316
- 3465 - Papaveraceae: LTS0195316
- 3745 - Rosaceae: LTS0195316
- 35493 - Streptophyta: LTS0195316
- 58023 - Tracheophyta: LTS0195316
- 33090 - Viridiplantae: LTS0195316
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Maoni Chao, Genhai Hu, Jie Dong, Yu Chen, Yuanzhi Fu, Jinbao Zhang, Qinglian Wang. Sequence Characteristics and Expression Analysis of the Gene Encoding Sedoheptulose-1,7-Bisphosphatase, an Important Calvin Cycle Enzyme in Upland Cotton (Gossypium hirsutum L.).
International journal of molecular sciences.
2023 Apr; 24(7):. doi:
10.3390/ijms24076648
. [PMID: 37047620] - Maria Ermakova, Patricia E Lopez-Calcagno, Robert T Furbank, Christine A Raines, Susanne von Caemmerer. Increased sedoheptulose-1,7-bisphosphatase content in Setaria viridis does not affect C4 photosynthesis.
Plant physiology.
2023 02; 191(2):885-893. doi:
10.1093/plphys/kiac484
. [PMID: 36282540] - Manzer H Siddiqui, Soumya Mukherjee, Ritesh Kumar, Saleh Alansi, Anis Ali Shah, Hazem M Kalaji, Talha Javed, Ali Raza. Potassium and melatonin-mediated regulation of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxalase system accompanying tolerance to cadmium stress in tomato seedlings.
Plant physiology and biochemistry : PPB.
2022 Jan; 171(?):49-65. doi:
10.1016/j.plaphy.2021.12.018
. [PMID: 34971955] - Klaus Brilisauer, Johanna Rapp, Pascal Rath, Anna Schöllhorn, Lisa Bleul, Elisabeth Weiß, Mark Stahl, Stephanie Grond, Karl Forchhammer. Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms.
Nature communications.
2019 02; 10(1):545. doi:
10.1038/s41467-019-08476-8
. [PMID: 30710081] - Manuela J Rist, Alexander Roth, Lara Frommherz, Christoph H Weinert, Ralf Krüger, Benedikt Merz, Diana Bunzel, Carina Mack, Björn Egert, Achim Bub, Benjamin Görling, Pavleta Tzvetkova, Burkhard Luy, Ingrid Hoffmann, Sabine E Kulling, Bernhard Watzl. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study.
PloS one.
2017; 12(8):e0183228. doi:
10.1371/journal.pone.0183228
. [PMID: 28813537] - Jennifer Popko, Cornelia Herrfurth, Kirstin Feussner, Till Ischebeck, Tim Iven, Richard Haslam, Mary Hamilton, Olga Sayanova, Jonathan Napier, Inna Khozin-Goldberg, Ivo Feussner. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum.
PloS one.
2016; 11(10):e0164673. doi:
10.1371/journal.pone.0164673
. [PMID: 27736949] - Bo Feng, Shengming Wu, Feng Liu, Yan Gao, Fangting Dong, Lai Wei. Metabonomic analysis of liver tissue from BALB/c mice with D-galactosamine/lipopolysaccharide-induced acute hepatic failure.
BMC gastroenterology.
2013 Apr; 13(?):73. doi:
10.1186/1471-230x-13-73
. [PMID: 23627910] - Johan Ceusters, Christof Godts, Darin Peshev, Rudy Vergauwen, Natalia Dyubankova, Eveline Lescrinier, Maurice P De Proft, Wim Van den Ende. Sedoheptulose accumulation under CO₂ enrichment in leaves of Kalanchoë pinnata: a novel mechanism to enhance C and P homeostasis?.
Journal of experimental botany.
2013 Apr; 64(6):1497-507. doi:
10.1093/jxb/ert010
. [PMID: 23378377] - Udo F H Engelke, Fokje S M Zijlstra, Fanny Mochel, Vassili Valayannopoulos, Daniel Rabier, Leo A J Kluijtmans, András Perl, Nanda M Verhoeven-Duif, Pascale de Lonlay, Mirjam M C Wamelink, Cornelis Jakobs, Eva Morava, Ron A Wevers. Mitochondrial involvement and erythronic acid as a novel biomarker in transaldolase deficiency.
Biochimica et biophysica acta.
2010 Nov; 1802(11):1028-35. doi:
10.1016/j.bbadis.2010.06.007
. [PMID: 20600873] - M M Wamelink, D E Smith, E E Jansen, N M Verhoeven, E A Struys, C Jakobs. Detection of transaldolase deficiency by quantification of novel seven-carbon chain carbohydrate biomarkers in urine.
Journal of inherited metabolic disease.
2007 Oct; 30(5):735-42. doi:
10.1007/s10545-007-0590-2
. [PMID: 17603756] - P P Hipps, K Ackermann, W H Holland, W R Sherman. Synthesis of sedoheptulose from non-dialyzable, endogenous substrates in mammalian tissue extracts.
Carbohydrate research.
1981 Oct; 96(1):1-6. doi:
10.1016/s0008-6215(00)84689-3
. [PMID: 7296564] - G DOMAN, R Ia SHKOL'NIK. [Conversion of radiocarbon-labeled sedoheptulose in bean, tobacco and Sedum spectabile leaves].
Biokhimiia (Moscow, Russia).
1959 Mar; 24(2):187-91. doi:
"
. [PMID: 13670969] - F H BRUNS, E DUNWALD, E NOLTMANN. [Metabolism of ribose-5-phosphate in hemolysates. III. Quantitative determination of sedoheptulose-7-phosphate and some properties of the transketolase of erythrocytes and blood serum].
Biochemische Zeitschrift.
1958; 330(6):497-508. doi:
NULL
. [PMID: 13596392] - A NORDAL, A A BENSON, M CALVIN. Phytosynthesis of sedoheptulose-C14.
Archives of biochemistry and biophysics.
1956 Jun; 62(2):435-45. doi:
10.1016/0003-9861(56)90142-4
. [PMID: 13328132] - N E TOLBERT, L P ZILL. Metabolism of sedoheptulose-C14 in plant leaves.
Archives of biochemistry and biophysics.
1954 Jun; 50(2):392-8. doi:
10.1016/0003-9861(54)90054-5
. [PMID: 13159338] - . .
.
. doi:
. [PMID: 18186520]