PS(14:0/14:0) (BioDeep_00000032557)
human metabolite Endogenous
代谢物信息卡片
化学式: C34H66NO10P (679.4424106)
中文名称: 1,2-二肉豆蔻酰-SN-甘油-3-磷酸-L-丝氨酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCC(C(=O)O)N)OC(=O)CCCCCCCCCCCCC
InChI: InChI=1S/C34H66NO10P/c1-3-5-7-9-11-13-15-17-19-21-23-25-32(36)42-27-30(28-43-46(40,41)44-29-31(35)34(38)39)45-33(37)26-24-22-20-18-16-14-12-10-8-6-4-2/h30-31H,3-29,35H2,1-2H3,(H,38,39)(H,40,41)/t30-,31+/m1/s1
描述信息
PS(14:0/14:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(14:0/14:0), in particular, consists of two chains of myristic acid both at the C-1 position and the C-2 position. The myristic acid moiety is derived from nutmeg and butter. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
PS(14:0/14:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PS(14:0/14:0), in particular, consists of two tetradecanoyl chains at positions C-1 and C-2. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.
同义名列表
14 个代谢物同义名
(2S)-2-amino-3-({[(2R)-2,3-bis(tetradecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid; 1-Myristoyl-2-myristoyl-sn-glycero-3-phosphoserine; 1,2-ditetradecanoyl-rac-glycero-3-phosphoserine; 1,2-Dimyristoyl-sn-glycero-3-phosphorylserine; 1,2-dimyristoyl-rac-glycero-3-phosphoserine; Dimyristoyl phosphatidylserine; Phosphatidylserine(14:0/14:0); Dimyristoylphosphatidylserine; Phosphatidylserine(28:0); PSer(14:0/14:0); PS(14:0/14:0); PSer(28:0); PS(28:0); DMPSE
数据库引用编号
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
28 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(28)
- phospholipid biosynthesis CL(16:0/16:0/14:0/14:0):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(19:0cycv8c/16:0/14:0/14:0)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(19:0cycv8c/16:1(9Z)/14:0/14:0)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(19:0cycv8c/18:1(9Z)/14:0/14:0)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/14:0/14:0/18:1(9Z))):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/14:0/18:1(9Z)/14:0)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/16:0/14:0/14:0)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/16:1(9Z)/14:0/14:0)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/18:1(9Z)/14:0/14:0)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(10:0(3-OH)/17:0cycw7c/14:0/14:0)):
CDP-DG(14:0/14:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(14:0/14:0)
- phospholipid biosynthesis (CL(14:0(3-OH)/17:0cycw7c/14:0/14:0)):
CDP-DG(14:0/14:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(14:0/14:0)
- Lysolipid Incorporation into Mitochondria:
Adenosine triphosphate + LysoPC(14:0/0:0) + Water ⟶ Adenosine diphosphate + LysoPC(14:0/0:0) + Phosphate
- Lysolipid Incorporation into ER:
Glycerophosphocholine + Water ⟶ Choline + Glycerol 3-phosphate + Hydrogen Ion
- Lysolipid Incorporation into ER PC(14:0/14:0):
Glycerophosphocholine + Water ⟶ Choline + Glycerol 3-phosphate + Hydrogen Ion
- Lysolipid Incorporation into ER PC(18:2(9Z,11Z)/18:2(9Z,11Z)):
Glycerophosphocholine + Water ⟶ Choline + Glycerol 3-phosphate + Hydrogen Ion
- Lysolipid incorporation into Mitochondria PC(14:0/14:0):
Adenosine triphosphate + LysoPC(14:0/0:0) + Water ⟶ Adenosine diphosphate + LysoPC(14:0/0:0) + Phosphate
- Lysolipid incorporation into Mitochondria PC(18:2(9Z,11Z)/18:2(9Z,11Z)):
Adenosine triphosphate + LysoPC(14:0/0:0) + Water ⟶ Adenosine diphosphate + LysoPC(14:0/0:0) + Phosphate
- Phosphatidylcholine Biosynthesis PC(14:0/14:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylethanolamine Biosynthesis PE(14:0/14:0):
L-Serine + PC(14:0/14:0) ⟶ Choline + PS(14:0/14:0)
- Phosphatidylcholine biosynthesis PC(14:0/14:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(14:0/14:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylethanolamine Biosynthesis PE(14:0/14:0):
L-Serine + PC(14:0/14:0) ⟶ Choline + PS(14:0/14:0)
- Phosphatidylcholine Biosynthesis PC(14:0/14:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylethanolamine Biosynthesis PE(14:0/14:0):
L-Serine + PC(14:0/14:0) ⟶ Choline + PS(14:0/14:0)
- Phosphatidylcholine Biosynthesis PC(14:0/14:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylethanolamine Biosynthesis PE(14:0/14:0):
L-Serine + PC(14:0/14:0) ⟶ Choline + PS(14:0/14:0)
- Array:
L-Serine + PC(14:0/14:0) ⟶ Choline + PS(14:0/14:0)
- Array:
L-Serine + PC(14:0/14:0) ⟶ Choline + PS(14:0/14:0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ciaran P A Doherty, Sabine M Ulamec, Roberto Maya-Martinez, Sarah C Good, Jemma Makepeace, G Nasir Khan, Patricija van Oosten-Hawle, Sheena E Radford, David J Brockwell. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function.
Nature structural & molecular biology.
2020 03; 27(3):249-259. doi:
10.1038/s41594-020-0384-x
. [PMID: 32157247] - Naomi Dalchand, Merve Doğangün, Paul E Ohno, Emily Ma, Alex B F Martinson, Franz M Geiger. Perturbation of Hydrogen-Bonding Networks over Supported Lipid Bilayers by Poly(allylamine hydrochloride).
The journal of physical chemistry. B.
2019 05; 123(19):4251-4257. doi:
10.1021/acs.jpcb.9b02392
. [PMID: 31013086] - Juanmei Hu, Yimin Lou, Fengmin Wu. Improved Intracellular Delivery of Polyarginine Peptides with Cargoes.
The journal of physical chemistry. B.
2019 03; 123(12):2636-2644. doi:
10.1021/acs.jpcb.8b10483
. [PMID: 30830784] - José Lopes-de-Araújo, Salette Reis, Cláudia Nunes. Topotecan effect on the structure of normal and cancer plasma membrane lipid models: A multi-model approach.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2018 Oct; 123(?):515-523. doi:
10.1016/j.ejps.2018.08.006
. [PMID: 30086354] - Kathryn Louise Browning, Tania Kjellerup Lind, Selma Maric, Robert David Barker, Marité Cárdenas, Martin Malmsten. Effect of bilayer charge on lipoprotein lipid exchange.
Colloids and surfaces. B, Biointerfaces.
2018 Aug; 168(?):117-125. doi:
10.1016/j.colsurfb.2018.01.043
. [PMID: 29422308] - James W P Brown, Alexander K Buell, Thomas C T Michaels, Georg Meisl, Jacqueline Carozza, Patrick Flagmeier, Michele Vendruscolo, Tuomas P J Knowles, Christopher M Dobson, Céline Galvagnion. β-Synuclein suppresses both the initiation and amplification steps of α-synuclein aggregation via competitive binding to surfaces.
Scientific reports.
2016 11; 6(?):36010. doi:
10.1038/srep36010
. [PMID: 27808107] - Durgesh K Rai, Shuo Qian, William T Heller. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes.
Biochimica et biophysica acta.
2016 11; 1858(11):2788-2794. doi:
10.1016/j.bbamem.2016.08.006
. [PMID: 27526681] - Christopher Lockhart, Dmitri K Klimov. The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer.
Biochimica et biophysica acta.
2016 Jun; 1858(6):1118-28. doi:
10.1016/j.bbamem.2016.03.001
. [PMID: 26947182] - Marcela Manrique-Moreno, Julián Londoño-Londoño, Małgorzata Jemioła-Rzemińska, Kazimierz Strzałka, Fernando Villena, Marcia Avello, Mario Suwalsky. Structural effects of the Solanum steroids solasodine, diosgenin and solanine on human erythrocytes and molecular models of eukaryotic membranes.
Biochimica et biophysica acta.
2014 Jan; 1838(1 Pt B):266-77. doi:
10.1016/j.bbamem.2013.08.003
. [PMID: 23954587] - Fernando Muñoz, M Francisca Palomares-Jerez, Gustavo Daleo, José Villalaín, M Gabriela Guevara. Possible mechanism of structural transformations induced by StAsp-PSI in lipid membranes.
Biochimica et biophysica acta.
2014 Jan; 1838(1 Pt B):339-47. doi:
10.1016/j.bbamem.2013.08.004
. [PMID: 23954619] - Sarah R Dennison, Adam J Phoenix, David A Phoenix. Effect of salt on the interaction of Hal18 with lipid membranes.
European biophysics journal : EBJ.
2012 Sep; 41(9):769-76. doi:
10.1007/s00249-012-0840-6
. [PMID: 22893009] - Guillaume Sautrey, Monika Orlof, Beata Korchowiec, Jean-Bernard Regnouf de Vains, Ewa Rogalska. Membrane activity of tetra-p-guanidinoethylcalix[4]arene as a possible reason for its antibacterial properties.
The journal of physical chemistry. B.
2011 Dec; 115(50):15002-12. doi:
10.1021/jp208970g
. [PMID: 22081973] - Danor Aharon, Hana Weitman, Benjamin Ehrenberg. The effect of liposomes' surface electric potential on the uptake of hematoporphyrin.
Biochimica et biophysica acta.
2011 Aug; 1808(8):2031-5. doi:
10.1016/j.bbamem.2011.03.015
. [PMID: 21447321] - Sarantis Giatrellis, George Nounesis. Nucleic acid-lipid membrane interactions studied by DSC.
Journal of pharmacy & bioallied sciences.
2011 Jan; 3(1):70-6. doi:
10.4103/0975-7406.76470
. [PMID: 21430956] - B P Oberts, G J Blanchard. Headgroup-dependent lipid self-assembly on zirconium phosphate-terminated interfaces.
Langmuir : the ACS journal of surfaces and colloids.
2009 Dec; 25(24):13918-25. doi:
10.1021/la900507w
. [PMID: 19459589] - Barbara Gzyl-Malcher, Maria Filek, Gerald Brezesinski. Influence of cadmium and selenate on the interactions between hormones and phospholipids.
Langmuir : the ACS journal of surfaces and colloids.
2009 Nov; 25(22):13071-6. doi:
10.1021/la901653y
. [PMID: 19831406] - Antonio Ortiz, José A Teruel, María J Espuny, Ana Marqués, Angeles Manresa, Francisco J Aranda. Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes.
Chemistry and physics of lipids.
2009 Mar; 158(1):46-53. doi:
10.1016/j.chemphyslip.2008.11.001
. [PMID: 19046957] - Stephen M Danauskas, Maria K Ratajczak, Yuji Ishitsuka, Jeffrey Gebhardt, David Schultz, Mati Meron, Binhua Lin, Ka Yee C Lee. Monitoring x-ray beam damage on lipid films by an integrated Brewster angle microscope/x-ray diffractometer.
The Review of scientific instruments.
2007 Oct; 78(10):103705. doi:
10.1063/1.2796147
. [PMID: 17979426] - Sarah E Burgess, Yali Zhao, Arindam Sen, Sek Wen Hui. Resealing of electroporation of porcine epidermis using phospholipids and poloxamers.
International journal of pharmaceutics.
2007 May; 336(2):269-75. doi:
10.1016/j.ijpharm.2006.12.006
. [PMID: 17267148] - Taichi Yamamoto, Robert O Ryan. Anionic phospholipids inhibit apolipoprotein E--low-density lipoprotein receptor interactions.
Biochemical and biophysical research communications.
2007 Mar; 354(3):820-4. doi:
10.1016/j.bbrc.2007.01.066
. [PMID: 17258176] - S Narasimha Murthy, Ya-Li Zhao, Khin Marlan, Sek Wen Hui, A Latif Kazim, Arindam Sen. Lipid and electroosmosis enhanced transdermal delivery of insulin by electroporation.
Journal of pharmaceutical sciences.
2006 Sep; 95(9):2041-50. doi:
10.1002/jps.20682
. [PMID: 16850446] - Ruthven N A H Lewis, Monika Kiricsi, Elmar J Prenner, Robert S Hodges, Ronald N McElhaney. Fourier transform infrared spectroscopic study of the interactions of a strongly antimicrobial but weakly hemolytic analogue of gramicidin S with lipid micelles and lipid bilayer membranes.
Biochemistry.
2003 Jan; 42(2):440-9. doi:
10.1021/bi026707a
. [PMID: 12525171] - Wayne H Pitcher, Wray H Huestis. Preparation and analysis of small unilamellar phospholipid vesicles of a uniform size.
Biochemical and biophysical research communications.
2002 Sep; 296(5):1352-5. doi:
10.1016/s0006-291x(02)02092-2
. [PMID: 12207924] - Monica C Tory, A Rod Merrill. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide.
Biochimica et biophysica acta.
2002 Aug; 1564(2):435-48. doi:
10.1016/s0005-2736(02)00493-5
. [PMID: 12175927] - S V Verstraeten, P I Oteiza. Effects of Al(3+) and related metals on membrane phase state and hydration: correlation with lipid oxidation.
Archives of biochemistry and biophysics.
2000 Mar; 375(2):340-6. doi:
10.1006/abbi.1999.1671
. [PMID: 10700390] - Y M Shen, O I Chertihin, R L Biltonen, J J Sando. Lipid-dependent activation of protein kinase C-alpha by normal alcohols.
The Journal of biological chemistry.
1999 Nov; 274(48):34036-44. doi:
10.1074/jbc.274.48.34036
. [PMID: 10567370] - L Silvestro, P H Axelsen. Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding.
Biochemistry.
1999 Jan; 38(1):113-21. doi:
10.1021/bi981289o
. [PMID: 9890889] - J Struppe, E A Komives, S S Taylor, R R Vold. 2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles.
Biochemistry.
1998 Nov; 37(44):15523-7. doi:
10.1021/bi981326b
. [PMID: 9799515] - S R Letellier, M J Lochhead, A A Campbell, V Vogel. Oriented growth of calcium oxalate monohydrate crystals beneath phospholipid monolayers.
Biochimica et biophysica acta.
1998 Mar; 1380(1):31-45. doi:
10.1016/s0304-4165(97)00121-9
. [PMID: 9545525] - D Bach, I R Miller. Hydration of phospholipid bilayers in the presence and absence of cholesterol.
Biochimica et biophysica acta.
1998 Jan; 1368(2):216-24. doi:
10.1016/s0005-2736(97)00179-x
. [PMID: 9459599] - D J Moore, R H Sills, N Patel, R Mendelsohn. Conformational order of phospholipids incorporated into human erythrocytes: an FTIR spectroscopy study.
Biochemistry.
1996 Jan; 35(1):229-35. doi:
10.1021/bi951692k
. [PMID: 8555179] - K D Taylor, R Goel, F H Shirazi, M Molepo, P Popovic, D J Stewart, P T Wong. Pressure tuning infrared spectroscopic study of cisplatin-induced structural changes in a phosphatidylserine model membrane.
British journal of cancer.
1995 Dec; 72(6):1400-5. doi:
10.1038/bjc.1995.521
. [PMID: 8519651] - J M Mancheño, M Gasset, J Lacadena, F Ramón, A Martínez del Pozo, M Oñaderra, J G Gavilanes. Kinetic study of the aggregation and lipid mixing produced by alpha-sarcin on phosphatidylglycerol and phosphatidylserine vesicles: stopped-flow light scattering and fluorescence energy transfer measurements.
Biophysical journal.
1994 Sep; 67(3):1117-25. doi:
10.1016/s0006-3495(94)80578-8
. [PMID: 7811923] - H M Reinl, T M Bayerl. Interaction of myelin basic protein with single bilayers on a solid support: an NMR, DSC and polarized infrared ATR study.
Biochimica et biophysica acta.
1993 Sep; 1151(2):127-36. doi:
10.1016/0005-2736(93)90095-h
. [PMID: 8373787] - C R Flach, R Mendelsohn. A new infrared spectroscopoic marker for cochleate phases in phosphatidylserine-containing model membranes.
Biophysical journal.
1993 Apr; 64(4):1113-21. doi:
10.1016/s0006-3495(93)81477-2
. [PMID: 8494975] - E J Bolen, J J Sando. Effect of phospholipid unsaturation on protein kinase C activation.
Biochemistry.
1992 Jun; 31(25):5945-51. doi:
10.1021/bi00140a034
. [PMID: 1610837] - S F Sui, E Sackmann. Interaction of glycophorin with lipid bilayer studied by calorimetry, densitometry, static light scattering, and electron microscopy.
Journal of biochemistry.
1992 Jan; 111(1):129-38. doi:
10.1093/oxfordjournals.jbchem.a123708
. [PMID: 1607359] - S O Leung, J T Ho. Effect of membrane phase transition on long-time calcium-induced fusion of phosphatidylserine vesicles.
Chemistry and physics of lipids.
1991 Jan; 57(1):103-7. doi:
10.1016/0009-3084(91)90055-g
. [PMID: 2060060] - A Kurrle, P Rieber, E Sackmann. Reconstitution of transferrin receptor in mixed lipid vesicles. An example of the role of elastic and electrostatic forces for protein/lipid assembly.
Biochemistry.
1990 Sep; 29(36):8274-82. doi:
10.1021/bi00488a011
. [PMID: 2252889] - S W Tendian, B R Lentz. Evaluation of membrane phase behavior as a tool to detect extrinsic protein-induced domain formation: binding of prothrombin to phosphatidylserine/phosphatidylcholine vesicles.
Biochemistry.
1990 Jul; 29(28):6720-9. doi:
10.1021/bi00480a023
. [PMID: 2397210] - J M Walker, E C Homan, J J Sando. Differential activation of protein kinase C isozymes by short chain phosphatidylserines and phosphatidylcholines.
The Journal of biological chemistry.
1990 May; 265(14):8016-21. doi:
10.1016/s0021-9258(19)39032-5
. [PMID: 2335514] - M Auger, I C Smith, H H Mantsch, P T Wong. High-pressure infrared study of phosphatidylserine bilayers and their interactions with the local anesthetic tetracaine.
Biochemistry.
1990 Feb; 29(8):2008-15. doi:
10.1021/bi00460a008
. [PMID: 2328235] - C M Redman, T Huima, E Robbins, S Lee, W L Marsh. Effect of phosphatidylserine on the shape of McLeod red cell acanthocytes.
Blood.
1989 Oct; 74(5):1826-35. doi:
"
. [PMID: 2790207] - D L Daleke, W H Huestis. Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids.
The Journal of cell biology.
1989 Apr; 108(4):1375-85. doi:
10.1083/jcb.108.4.1375
. [PMID: 2925790] - M Petersheim, J Sun. On the coordination of La3+ by phosphatidylserine.
Biophysical journal.
1989 Apr; 55(4):631-6. doi:
10.1016/s0006-3495(89)82860-7
. [PMID: 2720062] - M Roux, J M Neumann, R S Hodges, P F Devaux, M Bloom. Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance.
Biochemistry.
1989 Mar; 28(5):2313-21. doi:
10.1021/bi00431a050
. [PMID: 2497777] - M Bitbol, C Dempsey, A Watts, P F Devaux. Weak interaction of spectrin with phosphatidylcholine-phosphatidylserine multilayers: a 2H and 31P NMR study.
FEBS letters.
1989 Feb; 244(1):217-22. doi:
10.1016/0014-5793(89)81196-2
. [PMID: 2924905] - W K Liddle, C R Middaugh, A T Tu. A calorimetric examination of the effect of myotoxin a on the thermotropic phase behavior of model lipid membranes.
Chemistry and physics of lipids.
1987 Oct; 45(1):93-100. doi:
10.1016/0009-3084(87)90042-9
. [PMID: 3446412] - H L Casal, H H Mantsch, H Hauser. Infrared studies of fully hydrated saturated phosphatidylserine bilayers. Effect of Li+ and Ca2+.
Biochemistry.
1987 Jul; 26(14):4408-16. doi:
10.1021/bi00388a033
. [PMID: 3663596] - R Maksymiw, S F Sui, H Gaub, E Sackmann. Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae.
Biochemistry.
1987 Jun; 26(11):2983-90. doi:
10.1021/bi00385a005
. [PMID: 3607004] - P F Devaux, G L Hoatson, E Favre, P Fellmann, B Farren, A L MacKay, M Bloom. Interaction of cytochrome c with mixed dimyristoylphosphatidylcholine-dimyristoylphosphatidylserine bilayers: a deuterium nuclear magnetic resonance study.
Biochemistry.
1986 Jul; 25(13):3804-12. doi:
10.1021/bi00361a011
. [PMID: 3017405] - G Ramsay, R Prabhu, E Freire. Direct measurement of the energetics of association between myelin basic protein and phosphatidylserine vesicles.
Biochemistry.
1986 Apr; 25(8):2265-70. doi:
10.1021/bi00356a062
. [PMID: 2423123] - M Roux, J M Neumann. Deuterium NMR study of head-group deuterated phosphatidylserine in pure and binary phospholipid bilayers. Interactions with monovalent cations Na+ and Li+.
FEBS letters.
1986 Apr; 199(1):33-8. doi:
10.1016/0014-5793(86)81218-2
. [PMID: 3956745] - T H Fischer, T P Williams. Selectivity in rhodopsin-phospholipid interactions.
Archives of biochemistry and biophysics.
1984 Nov; 234(2):394-404. doi:
10.1016/0003-9861(84)90285-6
. [PMID: 6093698]