PC(18:1(9Z)/16:0) (BioDeep_00000029382)

   

human metabolite Endogenous blood metabolite


代谢物信息卡片


(2-{[(2R)-2-(hexadecanoyloxy)-3-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

化学式: C42H82NO8P (759.5777742)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 4.55%

分子结构信息

SMILES: CCCCCCCCCCCCCCCC(=O)OC(COC(=O)CCCCCCCC=CCCCCCCCC)COP(=O)([O-])OCC[N+](C)(C)C
InChI: InChI=1S/C42H82NO8P/c1-6-8-10-12-14-16-18-20-21-23-24-26-28-30-32-34-41(44)48-38-40(39-50-52(46,47)49-37-36-43(3,4)5)51-42(45)35-33-31-29-27-25-22-19-17-15-13-11-9-7-2/h20-21,40H,6-19,22-39H2,1-5H3/b21-20-/t40-/m1/s1

描述信息

PC(18:1(9Z)/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:1(9Z)/16:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.

同义名列表

27 个代谢物同义名

(2-{[(2R)-2-(hexadecanoyloxy)-3-[(9Z)-octadec-9-enoyloxy]propyl phosphonato]oxy}ethyl)trimethylazanium; 1-(Z)-Octadec-9-enoyl-2-hexadecanoyl-sn-glycero-3-phosphocholine; 1-(9Z)-Octadecenoyl-2-hexadecanoyl-sn-glycero-3-phosphocholine; 1-(9Z-octadecenoyl)-2-hexadecanoyl-sn-glycero-3-phosphocholine; 1-Oleoyl-2-palmitoylphosphatidylcholine, (R-(Z))-isomer; 1-Oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine; L-alpha-1-Oleoyl-2-palmitoyl phosphatidylcholine; 1-Oleyl-2-palmitoyl-sn-glycero-3-phosphocholine; 1-palmotoyl-2-oleoylglycero-3-phosphocholine; L-Α-1-oleoyl-2-palmitoyl phosphatidylcholine; 1-C18:1(Omega-9)-2-C16:0-phosphatidylcholine; L-a-1-Oleoyl-2-palmitoyl phosphatidylcholine; 1-palmitoyl-2-oleoylphosphatidylcholine; 1-Oleoyl-2-palmitoylphosphatidylcholine; Phosphatidylcholine(18:1omega9/16:0); Phosphatidylcholine(18:1/16:0); 1-Oleoyl-2-palmitoyl lecithin; Phosphatidylcholine(34:1); PC(18:1Omega9/16:0); PC(18:1(9Z)/16:0); Gpcho(18:1/16:0); PC(18:1/16:0); GPCho(34:1); PC(34:1); Lecithin; ETC-588; OPPC



数据库引用编号

5 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Chang Wang, Martin R Krause, Steven L Regen. Push and pull forces in lipid raft formation: the push can be as important as the pull. Journal of the American Chemical Society. 2015 Jan; 137(2):664-6. doi: 10.1021/ja5115437. [PMID: 25561007]
  • Hideaki Kuge, Kana Akahori, Ken-Ichi Yagyu, Koichi Honke. Functional compartmentalization of the plasma membrane of neurons by a unique acyl chain composition of phospholipids. The Journal of biological chemistry. 2014 Sep; 289(39):26783-26793. doi: 10.1074/jbc.m114.571075. [PMID: 25096572]
  • John R Stutzman, Stephen J Blanksby, Scott A McLuckey. Gas-phase transformation of phosphatidylcholine cations to structurally informative anions via ion/ion chemistry. Analytical chemistry. 2013 Apr; 85(7):3752-7. doi: 10.1021/ac400190k. [PMID: 23469867]
  • Kaori Tada, Eri Miyazaki, Masaki Goto, Nobutake Tamai, Hitoshi Matsuki, Shoji Kaneshina. Barotropic and thermotropic bilayer phase behavior of positional isomers of unsaturated mixed-chain phosphatidylcholines. Biochimica et biophysica acta. 2009 May; 1788(5):1056-63. doi: 10.1016/j.bbamem.2009.02.008. [PMID: 19233121]
  • Liang Xu, Xicheng Wang, Weijie Zhao. Bridging the gap between molecular descriptors and mechanism: cases studies by molecular dynamics simulations. Journal of molecular graphics & modelling. 2009 Apr; 27(7):829-35. doi: 10.1016/j.jmgm.2008.12.007. [PMID: 19195915]
  • Mojtaba Bagheri, Michael Beyermann, Margitta Dathe. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrobial agents and chemotherapy. 2009 Mar; 53(3):1132-41. doi: 10.1128/aac.01254-08. [PMID: 19104020]
  • Kathryn A Melzak, Electra Gizeli. Relative activity of cholesterol in OPPC/cholesterol/sphingomyelin mixtures measured with an acoustic sensor. The Analyst. 2009 Mar; 134(3):609-14. doi: 10.1039/b813047g. [PMID: 19238301]
  • Kirt Martin, Douglas Brownfield, Christof Karmonik, Lee Sanford, Lynne Torres, William Insull, Joel Morrisett. Short-term tracking of atherosclerosis in operated and unoperated human carotid arteries by high resolution magnetic resonance imaging. World journal of surgery. 2007 Apr; 31(4):723-32. doi: 10.1007/s00268-006-0711-3. [PMID: 17354027]
  • Jeffrey F Ellena, Viktor V Obraztsov, Valerie L Cumbea, Catherine M Woods, David S Cafiso. Perfluorooctyl bromide has limited membrane solubility and is located at the bilayer center. Locating small molecules in lipid bilayers through paramagnetic enhancements of NMR relaxation. Journal of medicinal chemistry. 2002 Dec; 45(25):5534-42. doi: 10.1021/jm020278x. [PMID: 12459021]
  • A M Jiménez-Monreal, F J Aranda, V Micol, P Sánchez-Piñera, A de Godos, J C Gómez-Fernández. Influence of the physical state of the membrane on the enzymatic activity and energy of activation of protein kinase C alpha. Biochemistry. 1999 Jun; 38(24):7747-54. doi: 10.1021/bi983062z. [PMID: 10387014]
  • R Peters, R Sikorski. Cell biology. Gentle slam. Science (New York, N.Y.). 1998 Dec; 282(5397):2213-4. doi: 10.1126/science.282.5397.2213b. [PMID: 9890830]
  • M Yoshimoto, R Kuboi, Q Yang, J Miyake. Immobilized liposome chromatography for studies of protein-membrane interactions and refolding of denatured bovine carbonic anhydrase. Journal of chromatography. B, Biomedical sciences and applications. 1998 Aug; 712(1-2):59-71. doi: 10.1016/s0378-4347(98)00157-1. [PMID: 9698229]
  • W Pohle, C Selle, H Fritzsche, H Binder. Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. I. Methodology and general phenomena. Biospectroscopy. 1998; 4(4):267-80. doi: 10.1002/(sici)1520-6343(1998)4:4<267::aid-bspy5>3.0.co;2-#. [PMID: 9706385]
  • C Selle, W Pohle. Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. II. Water binding versus phase transitions. Biospectroscopy. 1998; 4(4):281-94. doi: 10.1002/(sici)1520-6343(1998)4:4<281::aid-bspy6>3.0.co;2-5. [PMID: 9706386]