4,8 Dimethylnonanoyl carnitine (BioDeep_00000028178)

   

human metabolite Endogenous


代谢物信息卡片


3-[(4,8-dimethylnonanoyl)oxy]-4-(trimethylazaniumyl)butanoate

化学式: C18H35NO4 (329.25659500000006)
中文名称:
谱图信息: 最多检出来源 Bos taurus(endogenous) 75%

分子结构信息

SMILES: CC(C)CCCC(C)CCC(=O)OC(CC(=O)[O-])C[N+](C)(C)C
InChI: InChI=1S/C18H35NO4/c1-14(2)8-7-9-15(3)10-11-18(22)23-16(12-17(20)21)13-19(4,5)6/h14-16H,7-13H2,1-6H3

描述信息

4,8 dimethylnonanoyl carnitine is an intermediate in phytanic and pristanic acid metabolism. Both phytanic acid and pristanic acid are initially oxidized in peroxisomes to 4,8-dimethylnonanoyl-CoA, which is then converted to to 4,8-dimethylnonanoyl carnitine (presumably by peroxisomal carnitine octanoyltransferase), and exported to the mitochondrion. After transport across the mitochondrial membrane and transfer of the acylgroup to coenzyme A, further oxidation to 2,6-dimethylheptanoyl-CoA occurs (PMID: 9469587). 4,8 dimethylnonanoyl carnitine is not a substrate for carnitine acetyltransferase, another acyltransferase localized in peroxisomes, which catalyzes the formation of carnitine esters of the other products of pristanic acid beta-oxidation, namely acetyl-CoA and propionyl-CoA. (PMID: 10486279). Earlier studies have shown that pristanic acid undergoes three cycles of beta-oxidation in peroxisomes to produce 4,8-dimethylnonanoyl-CoA (DMN-CoA) which is then transported to the mitochondria for full oxidation to CO(2) and H(2)O. In principle, this can be done via two different mechanisms in which DMN-CoA is either converted into the corresponding carnitine ester or hydrolyzed to 4,8-dimethylnonanoic acid plus CoASH.(PMID: 11785945). Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) and pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) are branched-chain fatty acids that are constituents of the human diet. As phytanic acid possesses a beta-methyl group, it cannot be degraded by beta-oxidation. Instead, phytanic acid is first degraded by alpha-oxidation, yielding pristanic acid, which is subsequently degraded by beta-oxidation. Phytanic acid alpha-oxidation is thought to occur partly, and pristanic acid beta-oxidation exclusively, in peroxisomes. Accumulation of phytanic acid and pristanic acid is found in blood and tissues of patients affected with generalized peroxisomal disorders. [HMDB]
4,8 dimethylnonanoyl carnitine is an intermediate in phytanic and pristanic acid metabolism. Both phytanic acid and pristanic acid are initially oxidized in peroxisomes to 4,8-dimethylnonanoyl-CoA, which is then converted to to 4,8-dimethylnonanoyl carnitine (presumably by peroxisomal carnitine octanoyltransferase), and exported to the mitochondrion. After transport across the mitochondrial membrane and transfer of the acylgroup to coenzyme A, further oxidation to 2,6-dimethylheptanoyl-CoA occurs (PMID: 9469587). 4,8 dimethylnonanoyl carnitine is not a substrate for carnitine acetyltransferase, another acyltransferase localized in peroxisomes, which catalyzes the formation of carnitine esters of the other products of pristanic acid beta-oxidation, namely acetyl-CoA and propionyl-CoA. (PMID: 10486279). Earlier studies have shown that pristanic acid undergoes three cycles of beta-oxidation in peroxisomes to produce 4,8-dimethylnonanoyl-CoA (DMN-CoA) which is then transported to the mitochondria for full oxidation to CO(2) and H(2)O. In principle, this can be done via two different mechanisms in which DMN-CoA is either converted into the corresponding carnitine ester or hydrolyzed to 4,8-dimethylnonanoic acid plus CoASH.(PMID: 11785945). Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) and pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) are branched-chain fatty acids that are constituents of the human diet. As phytanic acid possesses a beta-methyl group, it cannot be degraded by beta-oxidation. Instead, phytanic acid is first degraded by alpha-oxidation, yielding pristanic acid, which is subsequently degraded by beta-oxidation. Phytanic acid alpha-oxidation is thought to occur partly, and pristanic acid beta-oxidation exclusively, in peroxisomes. Accumulation of phytanic acid and pristanic acid is found in blood and tissues of patients affected with generalized peroxisomal disorders.

同义名列表

4 个代谢物同义名

3-[(4,8-dimethylnonanoyl)oxy]-4-(trimethylazaniumyl)butanoate; 4,8-Dimethylnonanoyl carnitine; 4,8 dimethylnonanoyl carnitine; 4,8-Dimethylnonanoylcarnitine



数据库引用编号

5 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(0)

PlantCyc(0)

代谢反应

66 个相关的代谢反应过程信息。

Reactome(60)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(6)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表