8-isoprostaglandin E2 (BioDeep_00000028161)

   

human metabolite Endogenous


代谢物信息卡片


(5Z)-7-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoic acid

化学式: C20H32O5 (352.2249622)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O
InChI: InChI=1S/C20H32O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h4,7,12-13,15-17,19,21,23H,2-3,5-6,8-11,14H2,1H3,(H,24,25)/b7-4-,13-12+/t15-,16-,17+,19+/m0/s1

描述信息

8-isoprostaglandin E2 is an isoprostane generated from the endoperoxide intermediate 8-iso-PGH2. Isoprostanes (IsoPs) are formed in vivo from the free radical-catalyzed peroxidation of arachidonate independent of cyclooxygenase (COX). Although the structures of these compounds are very similar to COX-derived prostaglandins (PGs), an important distinction between IsoPs and PGs is that IsoP bicycloendoperoxide intermediates contain side chains that are predominantly (>90\\%) oriented cis in relation to the prostane ring because the generation of these intermediates is favored kinetically. In contrast to other types of prostanoids, E2/D2-IsoPs are beta-hydroxyketone-containing compounds that can undergo reversible keto-enol tautomerization under both acidic and basic conditions, allowing rearrangement of the side chains that are initially cis to the more stable trans-configuration (PMID: 12746435). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
8-isoprostaglandin E2 is an isoprostane generated from the endoperoxide intermediate 8-iso-PGH2. Isoprostanes (IsoPs) are formed in vivo from the free radical-catalyzed peroxidation of arachidonate independent of cyclooxygenase (COX). Although the structures of these compounds are very similar to COX-derived prostaglandins (PGs), an important distinction between IsoPs and PGs is that IsoP bicycloendoperoxide intermediates contain side chains that are predominantly (>90\\%) oriented cis in relation to the prostane ring because the generation of these intermediates is favored kinetically. In contrast to other types of prostanoids, E2/D2-IsoPs are beta-hydroxyketone-containing compounds that can undergo reversible keto-enol tautomerization under both acidic and basic conditions, allowing rearrangement of the side chains that are initially cis to the more stable trans-configuration. (PMID: 12746435)
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

同义名列表

8 个代谢物同义名

(5Z)-7-[(1S,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoic acid; 7-[3-Hydroxy-2-(3-hydroxy-1-octenyl)-5-oxocyclopentyl]-5-heptenoic acid; (5Z,8b,11a,13E,15S)-11,15-Dihydroxy-9-oxo-prosta-5,13-dien-1-Oic acid; 7-[3-Hydroxy-2-(3-hydroxy-1-octenyl)-5-oxocyclopentyl]-5-heptenoate; (5Z,8b,11a,13E,15S)-11,15-Dihydroxy-9-oxo-prosta-5,13-dien-1-Oate; 8-isoprostaglandin E2; 8-Epi-pge2; 8-iso-PGE2



数据库引用编号

6 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Tatsuro Nakamura, Yuri Tachibana, Takahisa Murata. 8-iso-prostaglandin E2 induces nasal obstruction via thromboxane receptor in murine model of allergic rhinitis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2021 10; 35(10):e21941. doi: 10.1096/fj.202100827r. [PMID: 34559928]
  • Lucyna Mastalerz, Rafał Januszek, Marek Kaszuba, Krzysztof Wójcik, Natalia Celejewska-Wójcik, Anna Gielicz, Hanna Plutecka, Krzysztof Oleś, Paweł Stręk, Marek Sanak. Aspirin provocation increases 8-iso-PGE2 in exhaled breath condensate of aspirin-hypersensitive asthmatics. Prostaglandins & other lipid mediators. 2015 Sep; 121(Pt B):163-9. doi: 10.1016/j.prostaglandins.2015.07.001. [PMID: 26209241]
  • Takuya Shida, Takashi Nozawa, Mitsuo Sobajima, Hiroyuki Ihori, Akira Matsuki, Hiroshi Inoue. Fluvastatin-induced reduction of oxidative stress ameliorates diabetic cardiomyopathy in association with improving coronary microvasculature. Heart and vessels. 2014 Jul; 29(4):532-41. doi: 10.1007/s00380-013-0402-6. [PMID: 23979266]
  • Kjell S Sakariassen, Eti A Femia, Federico M Daray, Gian M Podda, Cristina Razzari, Mariateresa Pugliano, Andrea E Errasti, Arnaldo R Armesto, Wanda Nowak, Pēteris Alberts, Jean-Philippe Meyer, Alexandra S Sorensen, Marco Cattaneo, Rodolfo P Rothlin. EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin. Thrombosis research. 2012 Nov; 130(5):746-52. doi: 10.1016/j.thromres.2012.08.309. [PMID: 22959706]
  • Lucia S Graham, Farhad Parhami, Yin Tintut, Christina M R Kitchen, Linda L Demer, Rita B Effros. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss. Clinical immunology (Orlando, Fla.). 2009 Nov; 133(2):265-75. doi: 10.1016/j.clim.2009.07.011. [PMID: 19699688]
  • Erik Noschka, James N Moore, John F Peroni, Stephen J Lewis, Jason D Morrow, Tom P Robertson. Thromboxane and isoprostanes as inflammatory and vasoactive mediators in black walnut heartwood extract induced equine laminitis. Veterinary immunology and immunopathology. 2009 Jun; 129(3-4):200-10. doi: 10.1016/j.vetimm.2008.11.005. [PMID: 19111354]
  • Forrest H Nielsen. Marginal zinc deficiency increases magnesium retention and impairs calcium utilization in rats. Biological trace element research. 2009 Jun; 128(3):220-31. doi: 10.1007/s12011-008-8268-7. [PMID: 19002387]
  • Ralf A Benndorf, Edzard Schwedhelm, Anke Gnann, Raihana Taheri, Ghainsom Kom, Michael Didié, Anna Steenpass, Süleyman Ergün, Rainer H Böger. Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A(2) receptor: a potential link between oxidative stress and impaired angiogenesis. Circulation research. 2008 Oct; 103(9):1037-46. doi: 10.1161/circresaha.108.184036. [PMID: 18802021]
  • Jason D Morrow. The isoprostanes - unique products of arachidonate peroxidation: their role as mediators of oxidant stress. Current pharmaceutical design. 2006; 12(8):895-902. doi: 10.2174/138161206776055985. [PMID: 16533158]
  • Kamal F Badr, Tania E Abi-Antoun. Isoprostanes and the kidney. Antioxidants & redox signaling. 2005 Jan; 7(1-2):236-43. doi: 10.1089/ars.2005.7.236. [PMID: 15650411]
  • Stefanie A Fahlbusch, Dimitrios Tsikas, Christina Mehls, Frank-Mathias Gutzki, Rainer H Böger, Jürgen C Frölich, Dirk O Stichtenoth. Effects of carvedilol on oxidative stress in human endothelial cells and healthy volunteers. European journal of clinical pharmacology. 2004 Apr; 60(2):83-8. doi: 10.1007/s00228-004-0729-0. [PMID: 15004731]
  • J Ashley Jefferson, Jan Simoni, Elizabeth Escudero, Maria-Elena Hurtado, Erik R Swenson, Donald E Wesson, George F Schreiner, Robert B Schoene, Richard J Johnson, Abdias Hurtado. Increased oxidative stress following acute and chronic high altitude exposure. High altitude medicine & biology. 2004; 5(1):61-9. doi: 10.1089/152702904322963690. [PMID: 15072717]
  • Ling Gao, William E Zackert, Justin J Hasford, Michael E Danekis, Ginger L Milne, Catha Remmert, Jeff Reese, Huiyong Yin, Hsin-Hsiung Tai, Sudhansu K Dey, Ned A Porter, Jason D Morrow. Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase. The Journal of biological chemistry. 2003 Aug; 278(31):28479-89. doi: 10.1074/jbc.m303984200. [PMID: 12746435]
  • Lisa G Wood, Dominic A Fitzgerald, Alexander K Lee, Manohar L Garg. Improved antioxidant and fatty acid status of patients with cystic fibrosis after antioxidant supplementation is linked to improved lung function. The American journal of clinical nutrition. 2003 Jan; 77(1):150-9. doi: 10.1093/ajcn/77.1.150. [PMID: 12499335]
  • Yin Tintut, Farhad Parhami, Anastasia Tsingotjidou, Sotirios Tetradis, Mary Territo, Linda L Demer. 8-Isoprostaglandin E2 enhances receptor-activated NFkappa B ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. The Journal of biological chemistry. 2002 Apr; 277(16):14221-6. doi: 10.1074/jbc.m111551200. [PMID: 11827970]
  • Lisa G Wood, Dominic A Fitzgerald, Peter G Gibson, David M Cooper, Manohar L Garg. Increased plasma fatty acid concentrations after respiratory exacerbations are associated with elevated oxidative stress in cystic fibrosis patients. The American journal of clinical nutrition. 2002 Apr; 75(4):668-75. doi: 10.1093/ajcn/75.4.668. [PMID: 11916752]
  • L J Janssen, M Premji, S Netherton, A Catalli, G Cox, S Keshavjee, D J Crankshaw. Excitatory and inhibitory actions of isoprostanes in human and canine airway smooth muscle. The Journal of pharmacology and experimental therapeutics. 2000 Nov; 295(2):506-11. doi: ". [PMID: 11046082]
  • H Junger, L S Sorkin. Isoprostanes induce plasma extravasation in rat skin. Prostaglandins & other lipid mediators. 2000 Oct; 62(4):335-42. doi: 10.1016/s0090-6980(00)00080-0. [PMID: 11060897]
  • S Zahler, B F Becker. Indirect enhancement of neutrophil activity and adhesion to cultured human umbilical vein endothelial cells by isoprostanes (iPF2alpha-III and iPE2-III). Prostaglandins & other lipid mediators. 1999 Jul; 57(5-6):319-31. doi: 10.1016/s0090-6980(98)00079-3. [PMID: 10480486]
  • Y S Weems, M A Lammoglia, A W Lewis, R D Randel, R G Sasser, I Morita, C W Weems. PGE2 induces its own secretion in vitro by bovine 270-day placenta but not by 200-day placenta. Prostaglandins & other lipid mediators. 1999 Jun; 57(4):189-205. doi: 10.1016/s0090-6980(99)00003-9. [PMID: 10402214]
  • J D Morrow, J Scruggs, Y Chen, W E Zackert, L J Roberts. Evidence that the E2-isoprostane, 15-E2t-isoprostane (8-iso-prostaglandin E2) is formed in vivo. Journal of lipid research. 1998 Aug; 39(8):1589-93. doi: 10.1016/s0022-2275(20)32187-8. [PMID: 9717718]
  • J Möbert, B F Becker, S Zahler, E Gerlach. Hemodynamic effects of isoprostanes (8-iso-prostaglandin F2alpha and E2) in isolated guinea pig hearts. Journal of cardiovascular pharmacology. 1997 Jun; 29(6):789-94. doi: 10.1097/00005344-199706000-00012. [PMID: 9234660]
  • N Leitinger, I Blazek, H Sinzinger. The influence of isoprostanes on ADP-induced platelet aggregation and cyclic AMP-generation in human platelets. Thrombosis research. 1997 May; 86(4):337-42. doi: 10.1016/s0049-3848(97)00077-7. [PMID: 9187022]
  • F Parhami, A D Morrow, J Balucan, N Leitinger, A D Watson, Y Tintut, J A Berliner, L L Demer. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arteriosclerosis, thrombosis, and vascular biology. 1997 Apr; 17(4):680-7. doi: 10.1161/01.atv.17.4.680. [PMID: 9108780]
  • G Kobzar, V Mardla, I Järving, N Samel, M Lõhmus. Modulatory effect of 8-iso-PGE2 on platelets. General pharmacology. 1997 Feb; 28(2):317-21. doi: 10.1016/s0306-3623(96)00224-8. [PMID: 9013211]
  • M Fukunaga, K Takahashi, K F Badr. Vascular smooth muscle actions and receptor interactions of 8-iso-prostaglandin E2, an E2-isoprostane. Biochemical and biophysical research communications. 1993 Sep; 195(2):507-15. doi: 10.1006/bbrc.1993.2075. [PMID: 8396920]