Lysyllysine (BioDeep_00000026926)

   

human metabolite Endogenous


代谢物信息卡片


(2S)-6-amino-2-[(2S)-2,6-diaminohexanamido]hexanoic acid

化学式: C12H26N4O3 (274.2004806)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(CCN)CC(C(=O)NC(CCCCN)C(=O)O)N
InChI: InChI=1S/C12H26N4O3/c13-7-3-1-5-9(15)11(17)16-10(12(18)19)6-2-4-8-14/h9-10H,1-8,13-15H2,(H,16,17)(H,18,19)

描述信息

Lysyllysine is a dipeptide composed of two lysine residues. It is an incomplete breakdown product of protein digestion or protein catabolism. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Some dipeptides are known to have physiological or cell-signalling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

同义名列表

19 个代谢物同义名

(2S)-6-amino-2-[(2S)-2,6-diaminohexanamido]hexanoic acid; Lysyllysine mono-trifluoroacetate; Lysyllysine dihydrochloride; Lysyllysine hydrochloride; Lysine-lysine dipeptide; Lysine lysine dipeptide; N2-L-Lysyl-L-lysine; L-Lysyl-L-lysine; H-L-Lys-L-lys-OH; N2-Lysyllysine; K-K Dipeptide; Lysyl-lysine; KK Dipeptide; H-Lys-lys-OH; Lysyllysine; L-Lys-L-lys; Dilysine; Lys-lys; KK



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Adam V Wisnewski, Ala F Nassar, Jian Liu, Dhimiter Bello. Dilysine-Methylene Diphenyl Diisocyanate (MDI), a Urine Biomarker of MDI Exposure?. Chemical research in toxicology. 2019 04; 32(4):557-565. doi: 10.1021/acs.chemrestox.8b00262. [PMID: 30724074]
  • Radouane Ghebouli, Stephane Loyau, Murielle Maire, Pierre Saboural, Jean-Philippe Collet, Martine Jandrot-Perrus, Didier Letourneur, Frédéric Chaubet, Jean-Baptiste Michel. Amino-Fucoidan as a Vector for rtPA-Induced Fibrinolysis in Experimental Thrombotic Events. Thrombosis and haemostasis. 2018 01; 118(1):42-53. doi: 10.1160/th17-02-0132. [PMID: 29304524]
  • Omer Abraham, Karnit Gotliv, Anna Parnis, Gaelle Boncompain, Franck Perez, Dan Cassel. Control of protein trafficking by reversible masking of transport signals. Molecular biology of the cell. 2016 Apr; 27(8):1310-9. doi: 10.1091/mbc.e15-07-0472. [PMID: 26941332]
  • Jagbir Singh, Peng Yang, Deborah Michel, Ronald E Verrall, Marianna Foldvari, Ildiko Badea. Amino acid-substituted gemini surfactant-based nanoparticles as safe and versatile gene delivery agents. Current drug delivery. 2011 May; 8(3):299-306. doi: 10.2174/156720111795256200. [PMID: 21291379]
  • Peng Yang, Jagbir Singh, Shawn Wettig, Marianna Foldvari, Ronald E Verrall, Ildiko Badea. Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2010 Aug; 75(3):311-20. doi: 10.1016/j.ejpb.2010.04.007. [PMID: 20417276]
  • Hesso Farhan, Veronika Reiterer, Alexander Kriz, Hans-Peter Hauri, Margit Pavelka, Harald H Sitte, Michael Freissmuth. Signal-dependent export of GABA transporter 1 from the ER-Golgi intermediate compartment is specified by a C-terminal motif. Journal of cell science. 2008 Mar; 121(Pt 6):753-61. doi: 10.1242/jcs.017681. [PMID: 18285449]
  • Lydia Barré, Jacques Magdalou, Patrick Netter, Sylvie Fournel-Gigleux, Mohamed Ouzzine. The stop transfer sequence of the human UDP-glucuronosyltransferase 1A determines localization to the endoplasmic reticulum by both static retention and retrieval mechanisms. The FEBS journal. 2005 Feb; 272(4):1063-71. doi: 10.1111/j.1742-4658.2005.04548.x. [PMID: 15691338]
  • Erik Lontok, Emily Corse, Carolyn E Machamer. Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. Journal of virology. 2004 Jun; 78(11):5913-22. doi: 10.1128/jvi.78.11.5913-5922.2004. [PMID: 15140989]
  • Jayasri Das Sarma, Fushan Wang, Michael Koval. Targeted gap junction protein constructs reveal connexin-specific differences in oligomerization. The Journal of biological chemistry. 2002 Jun; 277(23):20911-8. doi: 10.1074/jbc.m111498200. [PMID: 11929864]
  • R Puertollano, J A Martínez-Menárguez, A Batista, J Ballesta, M A Alonso. An intact dilysine-like motif in the carboxyl terminus of MAL is required for normal apical transport of the influenza virus hemagglutinin cargo protein in epithelial Madin-Darby canine kidney cells. Molecular biology of the cell. 2001 Jun; 12(6):1869-83. doi: 10.1091/mbc.12.6.1869. [PMID: 11408592]
  • R A van der Hoorn, A Ven der Ploeg, P J de Wit, M H Joosten. The C-terminal dilysine motif for targeting to the endoplasmic reticulum is not required for Cf-9 function. Molecular plant-microbe interactions : MPMI. 2001 Mar; 14(3):412-5. doi: 10.1094/mpmi.2001.14.3.412. [PMID: 11277439]
  • R T MacGillivray, M C Bewley, C A Smith, Q Y He, A B Mason, R C Woodworth, E N Baker. Mutation of the iron ligand His 249 to Glu in the N-lobe of human transferrin abolishes the dilysine 'trigger' but does not significantly affect iron release. Biochemistry. 2000 Feb; 39(6):1211-6. doi: 10.1021/bi991522y. [PMID: 10684598]
  • L M Khachigian, G Evin, F J Morgan, D A Owensby, C N Chesterman. A crossreactive antipeptide monoclonal antibody with specificity for lysyl-lysine. Journal of immunological methods. 1991 Jul; 140(2):249-58. doi: 10.1016/0022-1759(91)90378-s. [PMID: 1712372]