TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) (BioDeep_00000025334)
human metabolite Endogenous
代谢物信息卡片
化学式: C57H92O6 (872.6894)
中文名称: 甘油三亚麻酸酯
谱图信息:
最多检出来源 not specific(not specific) 0%
Last reviewed on 2024-09-24.
Cite this Page
TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/tg(18:3(9z,12z,15z)_18:3(9z,12z,15z)_18:3(9z,12z,15z)) (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000025334). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC(COC(=O)CCCCCCC/C=C\C/C=C\C/C=C\CC)OC(=O)CCCCCCC/C=C\C/C=C\C/C=C\CC
InChI: InChI=1S/C57H92O6/c1-4-7-10-13-16-19-22-25-28-31-34-37-40-43-46-49-55(58)61-52-54(63-57(60)51-48-45-42-39-36-33-30-27-24-21-18-15-12-9-6-3)53-62-56(59)50-47-44-41-38-35-32-29-26-23-20-17-14-11-8-5-2/h7-12,16-21,25-30,54H,4-6,13-15,22-24,31-53H2,1-3H3/b10-7-,11-8-,12-9-,19-16-,20-17-,21-18-,28-25-,29-26-,30-27-
描述信息
TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a tria-linolenic acid triglyceride. Triglycerides (TGs or TAGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid trimesters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position, one chain of a-linolenic acid at the C-2 position and one chain of a-linolenic acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org)
TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols.
同义名列表
35 个代谢物同义名
1-(9Z,12Z,15Z-Octadeatrienoyl)-2-(9Z,12Z,15Z-octadeatrienoyl)-3-(9Z,12Z,15Z-octadeatrienoyl)-glycerol; 1,3-bis[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate; 9,12,15-Octadecatrienoic acid, 1,2,3-propanetriyl ester; TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)); 1-a-Linolenoyl-2-a-linolenoyl-3-a-linolenoyl-glycerol; 9,12,15-Octadecatrienoate, 1,2,3-propanetriyl ester; 1,2,3-Propanetriyl-9,12,15-octadecatrienoic acid; 1,2,3-Tri-(9Z,12Z,15Z-octadecatrienoyl)glycerol; 1,2,3-Tri-(9Z,12Z,15Z)-octadecatrienoylglycerol; TG[18:3(Omega-3)/18:3(omega-3)/18:3(omega-3)]; 1,2,3-Propanetriyl-9,12,15-octadecatrienoate; 1,2,3-Tri(9,12,15-octadecatrienoyl)glycerol; Linolenic acid, 1,2,3-propanetriyl ester; Linolenate, 1,2,3-propanetriyl ester; 1,2,3-Propanetriyl linolenic acid; Triacylglycerol(18:3/18:3/18:3); Tracylglycerol(18:3/18:3/18:3); 1,2,3-Propanetriyl linolenate; Tri-alpha-linolenoylglycerol; 1,2,3-trilinolenoylglycerol; Glyceryl trilinolenic acid; Linolenoyl triglyceride; Glyceryl trilinolenate; Triacylglycerol(54:9); Trilinolenoylglycerol; Tracylglycerol(54:9); TAG(18:3/18:3/18:3); TG(18:3/18:3/18:3); Triacylglycerol; Trilinolenin; Triglyceride; FT-0773407; TAG(54:9); TG(54:9); TALG CPD
数据库引用编号
8 个数据库交叉引用编号
- ChEBI: CHEBI:75845
- PubChem: 5462874
- PubChem: 123344
- HMDB: HMDB0055309
- CAS: 14465-68-0
- PMhub: MS000183092
- LOTUS: LTS0205706
- wikidata: Q27145591
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
6 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(6)
- Triacylglycerol Degradation TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)):
Adenosine triphosphate + Glycerol ⟶ Adenosine diphosphate + Glycerol 3-phosphate + Hydrogen Ion
- De Novo Triacylglycerol Biosynthesis TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)):
DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) + alpha-Linolenoyl-CoA ⟶ Coenzyme A + TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))
- De Novo Triacylglycerol Biosynthesis TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)):
DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) + alpha-Linolenoyl-CoA ⟶ Coenzyme A + TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))
- De Novo Triacylglycerol Biosynthesis TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)):
DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) + alpha-Linolenoyl-CoA ⟶ Coenzyme A + TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))
- De Novo Triacylglycerol Biosynthesis TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)):
DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) + alpha-Linolenoyl-CoA ⟶ Coenzyme A + TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))
- De Novo Triacylglycerol Biosynthesis TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)):
DG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/0:0) + alpha-Linolenoyl-CoA ⟶ Coenzyme A + TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))
PharmGKB(0)
4 个相关的物种来源信息
- 212954 - Euphorbia petiolata: 10.1016/S0031-9422(96)00843-6
- 9606 - Homo sapiens: -
- 457746 - Inezia integrifolia: 10.1016/0031-9422(82)83114-2
- 1777510 - Plukenetia conophora: 10.1111/J.1745-4522.2001.TB00187.X
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Rahul Gopalam, Ajay W Tumaney. Functional characterization of acyltransferases from Salvia hispanica that can selectively catalyze the formation of trilinolenin.
Phytochemistry.
2021 Jun; 186(?):112712. doi:
10.1016/j.phytochem.2021.112712
. [PMID: 33706110] - Zhiguang Chen, Junrong Huang, Huayin Pu, Qi Yang, Chenlu Fang, Guowei Shu. Analysis of the complexation process between starch molecules and trilinolenin.
International journal of biological macromolecules.
2020 Dec; 165(Pt A):44-49. doi:
10.1016/j.ijbiomac.2020.09.139
. [PMID: 32987075] - Yingbin Shen, Liyou Zheng, Jun Jin, Xiaojing Li, Junning Fu, Mingzhong Wang, Yifu Guan, Xun Song. Phytochemical and Biological Characteristics of Mexican Chia Seed Oil.
Molecules (Basel, Switzerland).
2018 Dec; 23(12):. doi:
10.3390/molecules23123219
. [PMID: 30563201] - Qin Guo, Fan Jiang, Jing Jin, Qingpeng Li, Feng Wang, Qiang Wang, Yiming Ha. Highly sensitive method for the quantification of trans-linolenic acid isomers in trilinolenin of edible oils using an ionic liquid capillary column.
Journal of the science of food and agriculture.
2017 Nov; 97(14):4697-4703. doi:
10.1002/jsfa.8337
. [PMID: 28369919] - Xue Pan, Rodrigo M P Siloto, Aruna D Wickramarathna, Elzbieta Mietkiewska, Randall J Weselake. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin.
The Journal of biological chemistry.
2013 Aug; 288(33):24173-88. doi:
10.1074/jbc.m113.475699
. [PMID: 23824186] - Kanika Mitra, Jung-Ah Shin, Jeung-Hee Lee, Seong-Ai Kim, Soon-Taek Hong, Chang-Keun Sung, Cheng Lian Xue, Ki-Teak Lee. Studies of reaction variables for lipase-catalyzed production of alpha-linolenic acid enriched structured lipid and oxidative stability with antioxidants.
Journal of food science.
2012 Jan; 77(1):C39-45. doi:
10.1111/j.1750-3841.2011.02464.x
. [PMID: 22122200] - Karen M MacDougall, Jesse McNichol, Patrick J McGinn, Stephen J B O'Leary, Jeremy E Melanson. Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry.
Analytical and bioanalytical chemistry.
2011 Nov; 401(8):2609-16. doi:
10.1007/s00216-011-5376-6
. [PMID: 21915640] - Maryam Rakhshandehroo, Bianca Knoch, Michael Müller, Sander Kersten. Peroxisome proliferator-activated receptor alpha target genes.
PPAR research.
2010; 2010(?):. doi:
10.1155/2010/612089
. [PMID: 20936127] - Naohiro Gotoh, Yosuke Noguchi, Akiko Ishihara, Kaita Yamaguchi, Hoyo Mizobe, Toshiharu Nagai, Ikuko Otake, Kenji Ichioka, Shun Wada. Highly unsaturated fatty acid might act as an antioxidant in emulsion system oxidized by azo compound.
Journal of oleo science.
2010; 59(12):631-9. doi:
10.5650/jos.59.631
. [PMID: 21099140] - Glen S Patten, Mary Ann Augustin, Luz Sanguansri, Richard J Head, Mahinda Y Abeywardena. Site specific delivery of microencapsulated fish oil to the gastrointestinal tract of the rat.
Digestive diseases and sciences.
2009 Mar; 54(3):511-21. doi:
10.1007/s10620-008-0379-7
. [PMID: 18618251] - A S Bogevik, A Oxley, R E Olsen. Hydrolysis of acyl-homogeneous and fish oil triacylglycerols using desalted midgut extract from atlantic salmon, Salmo salar.
Lipids.
2008 Jul; 43(7):655-62. doi:
10.1007/s11745-008-3185-2
. [PMID: 18493809] - Heleen M de Vogel-van den Bosch, Nicole J W de Wit, Guido J E J Hooiveld, Hanneke Vermeulen, Jelske N van der Veen, Sander M Houten, Folkert Kuipers, Michael Müller, Roelof van der Meer. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine.
American journal of physiology. Gastrointestinal and liver physiology.
2008 May; 294(5):G1171-80. doi:
10.1152/ajpgi.00360.2007
. [PMID: 18356535] - Pablo Campo, Yuechen Zhao, Makram T Suidan, Albert D Venosa, George A Sorial. Biodegradation kinetics and toxicity of vegetable oil triacylglycerols under aerobic conditions.
Chemosphere.
2007 Aug; 68(11):2054-62. doi:
10.1016/j.chemosphere.2007.02.024
. [PMID: 17383709] - Kaki Shiva Shanker, Kudugunti Shireesha, Sanjit Kanjilal, Sambharaju V L N Kumar, Chinta Srinivas, Jammy V K Rao, Rachapudi B N Prasad. Isolation and characterization of neutral lipids of desilked eri silkworm pupae grown on castor and tapioca leaves.
Journal of agricultural and food chemistry.
2006 May; 54(9):3305-9. doi:
10.1021/jf060581x
. [PMID: 16637689] - Jesús Prades, Sérgio S Funari, Pablo V Escribá, Francisca Barceló. Effects of unsaturated fatty acids and triacylglycerols on phosphatidylethanolamine membrane structure.
Journal of lipid research.
2003 Sep; 44(9):1720-7. doi:
10.1194/jlr.m300092-jlr200
. [PMID: 12810821] - K Sato, Y Akiba. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens.
Poultry science.
2002 Jun; 81(6):846-52. doi:
10.1093/ps/81.6.846
. [PMID: 12079052] - R Holm, A Müllertz, E Christensen, C E Høy, H G Kristensen. Comparison of total oral bioavailability and the lymphatic transport of halofantrine from three different unsaturated triglycerides in lymph-cannulated conscious rats.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2001 Dec; 14(4):331-7. doi:
10.1016/s0928-0987(01)00186-5
. [PMID: 11684408] - S J Hardwick, K L Carpenter, N S Law, C Van Der Veen, C E Marchant, R Hird, M J Mitchinson. Toxicity of polyunsaturated fatty acid esters for human monocyte-macrophages: the anomalous behaviour of cholesteryl linolenate.
Free radical research.
1997 Apr; 26(4):351-62. doi:
10.3109/10715769709097815
. [PMID: 9167940]