4-Chloro-1H-indole-3-acetic acid (BioDeep_00000024080)

   

human metabolite natural product


代谢物信息卡片


2-(4-chloro-1H-indol-3-yl)acetic acid

  化学式: C10H8ClNO2 (209.0244)
中文名称: 4-氯吲哚-3-乙酸
  谱图信息: 最多检出来源 Viridiplantae(not specific) 2.02%

分子结构信息

SMILES: C1=CC2=C(C(=C1)Cl)C(=CN2)CC(=O)O
InChI: InChI=1S/C10H8ClNO2/c11-7-2-1-3-8-10(7)6(5-12-8)4-9(13)14/h1-3,5,12H,4H2,(H,13,14)

描述信息

Auxin from the seeds of Pisum sativum (pea) and isolated from Pinus sylvestris (Scotch pine). 4-Chloro-1H-indole-3-acetic acid is found in many foods, some of which are broad bean, pulses, common pea, and grass pea.
4-Chloro-1H-indole-3-acetic acid is found in broad bean. Auxin from the seeds of Pisum sativum (pea) and isolated from Pinus sylvestris (Scotch pine).
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids

同义名列表

20 个代谢物同义名

2-(4-chloro-1H-indol-3-yl)acetic acid; (4-chloro-1H-indol-3-yl)Acetic acid; 4-Chloro-1H-indole-3-acetic acid; 4-Chloroindolyl-3-acetic acid; 4-Chloroindole-3-acetic acid; 4-Chloro-1H-indole-3-acetate; 4-Chloroindolyl-3-acetate; 4-Chloroindole-3-acetate; 4-Chloro-IAA; 4-CL-IAA; 1H-Indole-3-acetic acid, 4-chloro-; 2-(4-chloranyl-1H-indol-3-yl)ethanoic acid; 2-(4-Chloro-3-indolyl)acetic Acid; 4-Chloro-1H-indole-3-acetic acid;4-Chloro-IAA;4-Chloroindoleacetic acid; 4-chloro-3-indoleacetic acid; 4-Chloroindole-3-aceticacid; 4-chloroindoleacetic acid; Indole-3-acetic acid, 4-chloro-; RF78HU5XXV; UNII-RF78HU5XXV



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

32 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Charitha P A Jayasinghege, Jocelyn A Ozga, Courtney D Nadeau, Harleen Kaur, Dennis M Reinecke. TIR1 auxin receptors are implicated in the differential response to 4-Cl-IAA and IAA in developing pea fruit. Journal of experimental botany. 2019 Feb; 70(4):1239-1253. doi: 10.1093/jxb/ery456. [PMID: 30715391]
  • Charitha P A Jayasinghege, Jocelyn A Ozga, Kosala D Waduthanthri, Dennis M Reinecke. Regulation of ethylene-related gene expression by indole-3-acetic acid and 4-chloroindole-3-acetic acid in relation to pea fruit and seed development. Journal of experimental botany. 2017 Jul; 68(15):4137-4151. doi: 10.1093/jxb/erx217. [PMID: 28922757]
  • Hong Kiat Lam, John J Ross, Erin L McAdam, Scott A M McAdam. The single evolutionary origin of chlorinated auxin provides a phylogenetically informative trait in the Fabaceae. Plant signaling & behavior. 2016 07; 11(7):e1197467. doi: 10.1080/15592324.2016.1197467. [PMID: 27302610]
  • Hong Kiat Lam, Scott A M McAdam, Erin L McAdam, John J Ross. Evidence That Chlorinated Auxin Is Restricted to the Fabaceae But Not to the Fabeae. Plant physiology. 2015 Jul; 168(3):798-803. doi: 10.1104/pp.15.00410. [PMID: 25971549]
  • John J Ross, Nathan D Tivendale, Sandra E Davidson, James B Reid, Noel W Davies, Laura J Quittenden, Jason A Smith. A mutation affecting the synthesis of 4-chloroindole-3-acetic acid. Plant signaling & behavior. 2012 Dec; 7(12):1533-6. doi: 10.4161/psb.22319. [PMID: 23073010]
  • Nathan D Tivendale, Sandra E Davidson, Noel W Davies, Jason A Smith, Marion Dalmais, Abdelhafid I Bendahmane, Laura J Quittenden, Lily Sutton, Raj K Bala, Christine Le Signor, Richard Thompson, James Horne, James B Reid, John J Ross. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant physiology. 2012 Jul; 159(3):1055-63. doi: 10.1104/pp.112.198457. [PMID: 22573801]
  • Nathalie Kühn, Patricio Arce-Johnson. Pollination: a key event controlling the expression of genes related to phytohormone biosynthesis during grapevine berry formation. Plant signaling & behavior. 2012 Jan; 7(1):7-11. doi: 10.4161/psb.7.1.18353. [PMID: 22301957]
  • Renata Kurtyka, Andrzej Kita, Waldemar Karcz. Fusicoccin counteracts the toxic effect of cadmium on the growth of maize coleoptile segments. Archives of environmental contamination and toxicology. 2011 Nov; 61(4):568-77. doi: 10.1007/s00244-011-9662-2. [PMID: 21424219]
  • Yongfeng Guo, Susheng Gan. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant physiology. 2011 Jul; 156(3):1612-9. doi: 10.1104/pp.111.177022. [PMID: 21543729]
  • Sibu Simon, Jan Petrášek. Why plants need more than one type of auxin. Plant science : an international journal of experimental plant biology. 2011 Mar; 180(3):454-60. doi: 10.1016/j.plantsci.2010.12.007. [PMID: 21421392]
  • Nils Stührwohldt, Renate I Dahlke, Bianka Steffens, Amanda Johnson, Margret Sauter. Phytosulfokine-α controls hypocotyl length and cell expansion in Arabidopsis thaliana through phytosulfokine receptor 1. PloS one. 2011; 6(6):e21054. doi: 10.1371/journal.pone.0021054. [PMID: 21698171]
  • Jocelyn A Ozga, Dennis M Reinecke, Belay T Ayele, Phuong Ngo, Courtney Nadeau, Aruna D Wickramarathna. Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant physiology. 2009 May; 150(1):448-62. doi: 10.1104/pp.108.132027. [PMID: 19297588]
  • Tiziana Pandolfini. Seedless fruit production by hormonal regulation of fruit set. Nutrients. 2009 02; 1(2):168-77. doi: 10.3390/nu1020168. [PMID: 22253976]
  • Ko Hirano, Koichiro Aya, Tokunori Hobo, Hitoshi Sakakibara, Mikiko Kojima, Rosalyn Angeles Shim, Yasuko Hasegawa, Miyako Ueguchi-Tanaka, Makoto Matsuoka. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant & cell physiology. 2008 Oct; 49(10):1429-50. doi: 10.1093/pcp/pcn123. [PMID: 18718932]
  • Masato Katayama, Yuko Masui, Eiji Kageyama, Youichi Kawabata, Kozo Kanayama. Synthesis and biological activities of 4-trifluoromethylindole-3-acetic acid: a new fluorinated indole auxin. Bioscience, biotechnology, and biochemistry. 2008 Aug; 72(8):2025-33. doi: 10.1271/bbb.80138. [PMID: 18685200]
  • Isabel Desgagné-Penix, Valerie M Sponsel. Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. Journal of experimental botany. 2008; 59(8):2057-70. doi: 10.1093/jxb/ern063. [PMID: 18440929]
  • Milan Soskić, Volker Magnus. Binding of ring-substituted indole-3-acetic acids to human serum albumin. Bioorganic & medicinal chemistry. 2007 Jul; 15(13):4595-600. doi: 10.1016/j.bmc.2007.04.005. [PMID: 17481907]
  • Halina Lekacz, Waldemar Karcz. The effect of auxins (IAA and 4-Cl-IAA) on the redox activity and medium pH of Zea mays L. root segments. Cellular & molecular biology letters. 2006; 11(3):376-83. doi: 10.2478/s11658-006-0031-5. [PMID: 16847555]
  • Jocelyn A Ozga, Jody Yu, Dennis M Reinecke. Pollination-, development-, and auxin-specific regulation of gibberellin 3beta-hydroxylase gene expression in pea fruit and seeds. Plant physiology. 2003 Mar; 131(3):1137-46. doi: 10.1104/pp.102.015974. [PMID: 12644664]
  • Sharon Rossiter, Lisa K Folkes, Peter Wardman. Halogenated indole-3-acetic acids as oxidatively activated prodrugs with potential for targeted cancer therapy. Bioorganic & medicinal chemistry letters. 2002 Sep; 12(18):2523-6. doi: 10.1016/s0960-894x(02)00505-x. [PMID: 12182852]
  • Branka Salopek-Sondi, Maja Kovac, Tatjana Prebeg, Volker Magnus. Developing fruit direct post-floral morphogenesis in Helleborus niger L. Journal of experimental botany. 2002 Sep; 53(376):1949-57. doi: 10.1093/jxb/erf047. [PMID: 12177135]
  • Phuong Ngo, Jocelyn A Ozga, Dennis M Reinecke. Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp. Plant molecular biology. 2002 Jul; 49(5):439-48. doi: 10.1023/a:1015522404586. [PMID: 12090620]
  • Waldemar Karcz, Zbigniew Burdach. A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. Journal of experimental botany. 2002 May; 53(371):1089-98. doi: 10.1093/jexbot/53.371.1089. [PMID: 11971920]
  • Jocelyn A Ozga, Rika van Huizen, Dennis M Reinecke. Hormone and seed-specific regulation of pea fruit growth. Plant physiology. 2002 Apr; 128(4):1379-89. doi: 10.1104/pp.010800. [PMID: 11950986]
  • S E Morris, C G Turnbull, I C Murfet, C A Beveridge. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant physiology. 2001 Jul; 126(3):1205-13. doi: 10.1104/pp.126.3.1205. [PMID: 11457970]
  • M Katayama. Synthesis and biological activities of 4-chloroindole-3-acetic acid and its esters. Bioscience, biotechnology, and biochemistry. 2000 Apr; 64(4):808-15. doi: 10.1271/bbb.64.808. [PMID: 10830497]
  • R van Huizen, J A Ozga, D M Reinecke, B Twitchin, L N Mander. Seed and 4-chloroindole-3-acetic acid regulation of gibberellin metabolism in pea pericarp. Plant physiology. 1995 Dec; 109(4):1213-7. doi: 10.1104/pp.109.4.1213. [PMID: 8539289]
  • . . . . doi: . [PMID: 7592320]