cellopentaose (BioDeep_00000230661)

Main id: BioDeep_00000001109

 

PANOMIX_OTCML-2023


代谢物信息卡片


4-[5-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,5,6-tetrahydroxyhexanal

化学式: C30H52O26 (828.2747)
中文名称: 纤维五糖, 麦芽五糖
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(C1C(C(C(C(O1)OC2C(OC(C(C2O)O)OC3C(OC(C(C3O)O)OC4C(OC(C(C4O)O)OC(C(CO)O)C(C(C=O)O)O)CO)CO)CO)O)O)O)O
InChI: InChI=1S/C30H52O26/c31-1-6-11(36)12(37)18(43)27(49-6)54-23-8(3-33)51-29(20(45)14(23)39)56-25-10(5-35)52-30(21(46)16(25)41)55-24-9(4-34)50-28(19(44)15(24)40)53-22-7(2-32)48-26(47)17(42)13(22)38/h6-47H,1-5H2/t6-,7-,8-,9-,10-,11-,12+,13-,14-,15-,16-,17-,18-,19-,20-,21-,22-,23-,24-,25-,26-,27+,28+,29+,30+/m1/s1

描述信息

Beta-cellopentaose is a cellopentaose in which the anomeric centre at the reducing end has beta-configuration.
Maltopentaose is a maltopentaose pentasaccharide in which the glucose residue at the reducing end is in the aldehydo open-chain form.
(2R,3R,4R,5R)-4-[(2R,3R,4R,5S,6R)-5-[(2R,3R,4R,5S,6R)-5-[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,5,6-tetrahydroxyhexanal is a natural product found in Drosophila melanogaster with data available.
A maltopentaose pentasaccharide in which the glucose residue at the reducing end is in the aldehydo open-chain form.
Maltopentaose is the shortest chain oligosaccharide that can be classified as maltodextrin and is also used in a study to investigate glycation and phosphorylation of α-lactalbumin.

同义名列表

18 个代谢物同义名

beta-D-glucopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->4)-beta-D-glucopyranosyl-(1->4)-beta-D-glucopyranose; beta-D-glucosyl-(1->4)-beta-D-glucosyl-(1->4)-beta-D-glucosyl-(1->4)-beta-D-glucosyl-(1->4)-beta-D-glucose; beta-D-Glcp-(1->4)-beta-D-Glcp-(1->4)-beta-D-Glcp-(1->4)-beta-D-Glcp-(1->4)-beta-D-Glcp; beta-D-Glc-(1->4)-beta-D-Glc-(1->4)-beta-D-Glc-(1->4)-beta-D-Glc-(1->4)-beta-D-Glc; maltopentaose, beta (D)-isomer; beta-Cellopentaose; D-Cellopentaose; cellopentaose; Maltopentaose; 1gu3; 3f5k; 4-[5-[5-[3,4-dihydroxy-6-(hydroxymethyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,5,6-tetrahydroxyhexanal; D-Glucose, O-alpha-D-glucopyranosyl-(1->4)-O-alpha-D-glucopyranosyl-(1->4)-O-alpha-D-glucopyranosyl-(1->4)-O-alpha-D-glucopyranosyl-(1->4)-; O-alpha-D-Glucopyranosyl-(1.4)-O-alpha-D-glucopyranosyl-(1.4)-O-alpha-D-glucopyranosyl-(1.4)-O-alpha-D-glucopyranosyl-(1.4)-D-glucose; alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-alpha-D-glucopyranosyl-(1->4)-D-glucose; alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glc; Maltopentaose (Maltopentose); Maltopentose



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Eun Yeong Jang, Ki-Bae Hong, Yeok Boo Chang, Jungcheul Shin, Eun Young Jung, Kyungae Jo, Hyung Joo Suh. In Vitro Prebiotic Effects of Malto-Oligosaccharides Containing Water-Soluble Dietary Fiber. Molecules (Basel, Switzerland). 2020 Nov; 25(21):. doi: 10.3390/molecules25215201. [PMID: 33182247]
  • Tomoki Nishimura, Wei-Lun Toh, Kazunari Akiyoshi. Synthesis and Characterization of Shell-Cross-Linked Glycopolymer Bilayer Vesicles. Macromolecular rapid communications. 2018 Dec; 39(23):e1800384. doi: 10.1002/marc.201800384. [PMID: 30062786]
  • Bruna Medeia Campos, Marcelo Vizona Liberato, Thabata Maria Alvarez, Letícia Maria Zanphorlin, Gabriela Cristina Ematsu, Hernane Barud, Igor Polikarpov, Roberto Ruller, Harry J Gilbert, Ana Carolina de Mattos Zeri, Fabio Marcio Squina. A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties. The Journal of biological chemistry. 2016 Nov; 291(45):23734-23743. doi: 10.1074/jbc.m116.744383. [PMID: 27621314]
  • Qing Wang, Hui Wang, Xiaohai Yang, Kemin Wang, Rongjuan Liu, Qing Li, Jinqing Ou. A sensitive one-step method for quantitative detection of α-amylase in serum and urine using a personal glucose meter. The Analyst. 2015 Feb; 140(4):1161-5. doi: 10.1039/c4an02033b. [PMID: 25516912]
  • Juan Zhang, Junhui Cui, Ying Liu, Yangyang Chen, Genxi Li. A novel electrochemical method to determine α-amylase activity. The Analyst. 2014 Jul; 139(13):3429-33. doi: 10.1039/c3an01839c. [PMID: 24855635]
  • Xiaoyun Su, Jing Zhang, Roderick I Mackie, Isaac K O Cann. Supplementing with non-glycoside hydrolase proteins enhances enzymatic deconstruction of plant biomass. PloS one. 2012; 7(8):e43828. doi: 10.1371/journal.pone.0043828. [PMID: 22952777]
  • Shin-ichiro Watanabe, Noboru Ogawa, Kaoru Kawada, Keiko Yaba, Minoru Konno. New staining method for use in electrophoretic determination of alpha-amylase isoenzymes in serum. Rinsho byori. The Japanese journal of clinical pathology. 2008 Jul; 56(7):559-63. doi: NULL. [PMID: 18709986]
  • Nelson Arno Wulff, Helaine Carrer, Sérgio Florentino Pascholati. Expression and purification of cellulase Xf818 from Xylella fastidiosa in Escherichia coli. Current microbiology. 2006 Sep; 53(3):198-203. doi: 10.1007/s00284-005-0475-2. [PMID: 16874548]
  • Emir Berkane, Frank Orlik, Johannes F Stegmeier, Alain Charbit, Mathias Winterhalter, Roland Benz. Interaction of bacteriophage lambda with its cell surface receptor: an in vitro study of binding of the viral tail protein gpJ to LamB (Maltoporin). Biochemistry. 2006 Feb; 45(8):2708-20. doi: 10.1021/bi051800v. [PMID: 16489764]
  • Susan J Crennell, Danielle Cook, Abby Minns, Dmitri Svergun, Rasmus L Andersen, Eva Nordberg Karlsson. Dimerisation and an increase in active site aromatic groups as adaptations to high temperatures: X-ray solution scattering and substrate-bound crystal structures of Rhodothermus marinus endoglucanase Cel12A. Journal of molecular biology. 2006 Feb; 356(1):57-71. doi: 10.1016/j.jmb.2005.11.004. [PMID: 16343530]
  • Katrin Denker, Frank Orlik, Bettina Schiffler, Roland Benz. Site-directed mutagenesis of the greasy slide aromatic residues within the LamB (maltoporin) channel of Escherichia coli: effect on ion and maltopentaose transport. Journal of molecular biology. 2005 Sep; 352(3):534-50. doi: 10.1016/j.jmb.2005.07.025. [PMID: 16095613]
  • Birte Kramhøft, Kristian Sass Bak-Jensen, Haruhide Mori, Nathalie Juge, Jane Nøhr, Birte Svensson. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase. Biochemistry. 2005 Feb; 44(6):1824-32. doi: 10.1021/bi048100v. [PMID: 15697208]
  • You-Na Kang, Motoyasu Adachi, Shigeru Utsumi, Bunzo Mikami. The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase. Journal of molecular biology. 2004 Jun; 339(5):1129-40. doi: 10.1016/j.jmb.2004.04.029. [PMID: 15178253]
  • Marius Santimone, Roger Koukiekolo, Yann Moreau, Véronique Le Berre, Pierre Rougé, Guy Marchis-Mouren, Véronique Desseaux. Porcine pancreatic alpha-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (alpha-AI1) and structural changes in the alpha-amylase inhibitor complex. Biochimica et biophysica acta. 2004 Feb; 1696(2):181-90. doi: 10.1016/j.bbapap.2003.11.001. [PMID: 14871659]
  • B-H Kim, C Andersen, J Kreth, C Ulmke, K Schmid, R Benz. Site-directed mutagenesis within the central constriction site of ScrY (sucroseporin): effect on ion transport and comparison of maltooligosaccharide binding to LamB of Escherichia coli. The Journal of membrane biology. 2002 Jun; 187(3):239-53. doi: 10.1007/s00232-001-0167-1. [PMID: 12163981]
  • A Charbit, C Andersen, J Wang, B Schiffler, V Michel, R Benz, M Hofnung. In vivo and in vitro studies of transmembrane beta-strand deletion, insertion or substitution mutants of the Escherichia coli K-12 maltoporin. Molecular microbiology. 2000 Feb; 35(4):777-90. doi: 10.1046/j.1365-2958.2000.01748.x. [PMID: 10692155]
  • R Koukiekolo, V Le Berre-Anton, V Desseaux, Y Moreau, P Rougé, G Marchis-Mouren, M Santimone. Mechanism of porcine pancreatic alpha-amylase inhibition of amylose and maltopentaose hydrolysis by kidney bean (Phaseolus vulgaris) inhibitor and comparison with that by acarbose. European journal of biochemistry. 1999 Oct; 265(1):20-6. doi: 10.1046/j.1432-1327.1999.00611.x. [PMID: 10491154]
  • C Andersen, C Bachmeyer, H Täuber, R Benz, J Wang, V Michel, S M Newton, M Hofnung, A Charbit. In vivo and in vitro studies of major surface loop deletion mutants of the Escherichia coli K-12 maltoporin: contribution to maltose and maltooligosaccharide transport and binding. Molecular microbiology. 1999 May; 32(4):851-67. doi: 10.1046/j.1365-2958.1999.01406.x. [PMID: 10361287]
  • C Andersen, B Rak, R Benz. The gene bglH present in the bgl operon of Escherichia coli, responsible for uptake and fermentation of beta-glucosides encodes for a carbohydrate-specific outer membrane porin. Molecular microbiology. 1999 Jan; 31(2):499-510. doi: 10.1046/j.1365-2958.1999.01191.x. [PMID: 10027967]
  • S Yokota, K Kumano, P Ma, T Hyodo, T Sakai, G Izumi, A Hashimoto, K Shibata, H Wang. Saccharides as osmotic agents in peritoneal dialysate: determination of molecular weight essential for more efficient fluid removal. Advances in peritoneal dialysis. Conference on Peritoneal Dialysis. 1998; 14(?):40-3. doi: NULL. [PMID: 10649688]
  • K Schülein, C Andersen, R Benz. The deletion of 70 amino acids near the N-terminal end of the sucrose-specific porin ScrY causes its functional similarity to LamB in vivo and in vitro. Molecular microbiology. 1995 Aug; 17(4):757-67. doi: 10.1111/j.1365-2958.1995.mmi_17040757.x. [PMID: 8801429]
  • A G Matthysse, D L Thomas, A R White. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. Journal of bacteriology. 1995 Feb; 177(4):1076-81. doi: 10.1128/jb.177.4.1076-1081.1995. [PMID: 7860586]
  • S Nekolla, C Andersen, R Benz. Noise analysis of ion current through the open and the sugar-induced closed state of the LamB channel of Escherichia coli outer membrane: evaluation of the sugar binding kinetics to the channel interior. Biophysical journal. 1994 May; 66(5):1388-97. doi: 10.1016/s0006-3495(94)80929-4. [PMID: 7520291]
  • S Honda, T Ohmura, Y Segawa, T Minematsu, K Kakehi. Liquid chromatographic assay of the relative activities of serum pancreatic and salivary alpha-amylase using reductively pyridylaminated maltopentaose as a fluorescent substrate. Journal of chromatography. 1987 Aug; 419(?):51-60. doi: 10.1016/0378-4347(87)80265-7. [PMID: 3499444]
  • K Larsen. alpha-Amylase determination using maltopentaose as substrate. Journal of clinical chemistry and clinical biochemistry. Zeitschrift fur klinische Chemie und klinische Biochemie. 1983 Jan; 21(1):45-52. doi: 10.1515/cclm.1983.21.1.45. [PMID: 6189958]
  • V W Lee, C Willis. Activity of human and nonhuman amylases on different substrates used in enzymatic kinetic assay methods--a pitfall in interlaboratory quality control. American journal of clinical pathology. 1982 Mar; 77(3):290-6. doi: 10.1093/ajcp/77.3.290. [PMID: 6176111]
  • R W BAILEY, B D GAILLARD. CARBOHYDRASES OF THE RUMEN CILIATE EPIDINIUM ECAUDATUM (CRAWLEY). HYDROLYSIS OF PLANT HEMICELLULOSE FRACTIONS AND BETA-LINKED GLUCOSE POLYMERS. The Biochemical journal. 1965 Jun; 95(?):758-66. doi: 10.1042/bj0950758. [PMID: 14342512]