2,4-Nonadienal (BioDeep_00000022070)

   

human metabolite natural product


代谢物信息卡片


trans,trans-2,4-nonadienal

  化学式: C9H14O (138.1045)
中文名称: 2,4-壬二烯醛
  谱图信息: 最多检出来源 Homo sapiens(not specific) 1.27%

分子结构信息

SMILES: CCCCC=CC=CC=O
InChI: InChI=1S/C9H14O/c1-2-3-4-5-6-7-8-9-10/h5-9H,2-4H2,1H3/b6-5+,8-7-

描述信息

(2E,4E)-2,4-Nonadienal is found in animal foods. Flavour and fragrance ingredient. (2E,4E)-2,4-Nonadienal is present in American cranberry, raw asparagus, peas, wheat bread, Russian cheeses, caviar, raw fatty fish, roast beef, boiled mutton, cooked chicken, roasted filberts, roasted peanuts, soybean, mushrooms and tomatoes. It may also be formed by lipid oxidation in foodstuffs such as skimmed milk and edible fats and oils.
(2E,4E)-2,4-Nonadienal is a flavouring and fragrance ingredient. It is found in american cranberry, raw asparagus, peas, wheat bread, Russian cheeses, caviar, raw fatty fish, roast beef, boiled mutton, cooked chicken, roasted filberts, roasted peanuts, soybean, mushrooms and tomatoes. It may also be formed by lipid oxidation in foods such as skimmed milk and edible fats and oils.

同义名列表

10 个代谢物同义名

trans,trans-2,4-nonadienal; (2Z,4E)-nona-2,4-dienal; (2E,4E)-2,4-Nonadienal; Nona-2,4-dien-1-al; 2,4-Nonadien-1-al; Nona-2,4-dienal; 2,4-nonadienal; Nonadienal; FEMA 3212; 2,4-Nonadienal



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Mohamed A A Mahmoud, Mahmoud Magdy, Thorsten Tybussek, Johannes Barth, Andrea Buettner. Comparative Evaluation of Wild and Farmed Rainbow Trout Fish Based on Representative Chemosensory and Microbial Indicators of Their Habitats. Journal of agricultural and food chemistry. 2023 Feb; 71(4):2094-2104. doi: 10.1021/acs.jafc.2c07868. [PMID: 36688586]
  • Caimeng Zhang, Yufei Hua, Xingfei Li, Xiangzhen Kong, Yeming Chen. Key volatile off-flavor compounds in peas (Pisum sativum L.) and their relations with the endogenous precursors and enzymes using soybean (Glycine max) as a reference. Food chemistry. 2020 Dec; 333(?):127469. doi: 10.1016/j.foodchem.2020.127469. [PMID: 32673955]
  • Yan Zhang, Shuntang Guo, Zhisheng Liu, Sam K C Chang. Off-flavor related volatiles in soymilk as affected by soybean variety, grinding, and heat-processing methods. Journal of agricultural and food chemistry. 2012 Aug; 60(30):7457-62. doi: 10.1021/jf3016199. [PMID: 22812487]
  • Katharina Domitila Petersen, Kim Karen Kleeberg, Gerhard Jahreis, Jan Fritsche. Assessment of the oxidative stability of conventional and high-oleic sunflower oil by means of solid-phase microextraction-gas chromatography. International journal of food sciences and nutrition. 2012 Mar; 63(2):160-9. doi: 10.3109/09637486.2011.609158. [PMID: 21854109]
  • Alicia Olivares, José Luis Navarro, Mónica Flores. Effect of fat content on aroma generation during processing of dry fermented sausages. Meat science. 2011 Mar; 87(3):264-73. doi: 10.1016/j.meatsci.2010.10.021. [PMID: 21112159]
  • Shinya Kato, Hisae Aoshima, Yasukazu Saitoh, Nobuhiko Miwa. Defensive effects of fullerene-C60 dissolved in squalane against the 2,4-nonadienal-induced cell injury in human skin keratinocytes HaCaT and wrinkle formation in 3D-human skin tissue model. Journal of biomedical nanotechnology. 2010 Feb; 6(1):52-8. doi: 10.1166/jbn.2010.1091. [PMID: 20499832]
  • Laila H Ribeiro, Ana M Costa Freitas, Marco D R Gomes da Silva. The use of headspace solid phase microextraction for the characterization of volatile compounds in olive oil matrices. Talanta. 2008 Oct; 77(1):110-7. doi: 10.1016/j.talanta.2008.05.051. [PMID: 18804607]
  • D Saïdana, M A Mahjoub, O Boussaada, J Chriaa, I Chéraif, M Daami, Z Mighri, A N Helal. Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiological research. 2008; 163(4):445-55. doi: 10.1016/j.micres.2006.07.009. [PMID: 17223327]
  • Patricio R Lozano, Maryanne Drake, Daniel Benitez, Keith R Cadwallader. Instrumental and sensory characterization of heat-induced odorants in aseptically packaged soy milk. Journal of agricultural and food chemistry. 2007 Apr; 55(8):3018-26. doi: 10.1021/jf0631225. [PMID: 17373812]
  • Cheng-Huang Dung, She-Ching Wu, Gow-Chin Yen. Genotoxicity and oxidative stress of the mutagenic compounds formed in fumes of heated soybean oil, sunflower oil and lard. Toxicology in vitro : an international journal published in association with BIBRA. 2006 Jun; 20(4):439-47. doi: 10.1016/j.tiv.2005.08.019. [PMID: 16216463]
  • Aslaug Högnadóttir, Russell L Rouseff. Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatography-mass spectrometry. Journal of chromatography. A. 2003 May; 998(1-2):201-11. doi: 10.1016/s0021-9673(03)00524-7. [PMID: 12862384]
  • S C Wu, G C Yen, F Sheu. Mutagenicity and identification of mutagenic compounds of fumes obtained from heating peanut oil. Journal of food protection. 2001 Feb; 64(2):240-5. doi: 10.4315/0362-028x-64.2.240. [PMID: 11271774]
  • A C Buck. Disorders of micturition in bacterial prostatitis. Proceedings of the Royal Society of Medicine. 1975 Aug; 68(8):508-11. doi: NULL. [PMID: 681]