PE(18:1/18:1) (BioDeep_00000019263)
human metabolite Endogenous
代谢物信息卡片
化学式: C41H78NO8P (743.5464758)
中文名称: 1,2-二油酰基-sn-甘油-3-磷脂酰乙醇胺
谱图信息:
最多检出来源 Homo sapiens(feces) 41.18%
Last reviewed on 2024-09-29.
Cite this Page
PE(18:1/18:1). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/pe(18:1(9z)_18:1(9z)) (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000019263). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CCCCCCCCC=CCCCCCCCC(=O)OCC(COP(=O)(O)OCCN)OC(=O)CCCCCCCC=CCCCCCCCC
InChI: InChI=1S/C41H78NO8P/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-31-33-40(43)47-37-39(38-49-51(45,46)48-36-35-42)50-41(44)34-32-30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h17-20,39H,3-16,21-38,42H2,1-2H3,(H,45,46)/b19-17-,20-18-/t39-/m1/s1
描述信息
PE(18:1(9Z)/18:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:1(9Z)/18:1(9Z)), in particular, consists of two chains of oleic acid at the C-1 and C-2 positions. The oleic acid moieties are derived from vegetable oils, especially olive and canola oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(18:1(9Z)/18:1(9Z)) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PE(18:1(9Z)/18:1(9Z)), in particular, consists of two 9Z-octadecenoyl chains at positions C-1 and C-2. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
同义名列表
24 个代谢物同义名
1-(9Z)-Octadecenoyl-2-(9Z)-octadecenoyl-sn-glycero-3-phosphoethanolamine zwitterion; (2-aminoethoxy)[(2R)-2,3-bis[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid; 1-C18:1(Omega-9)-2-C18:1(omega-9)-phosphatidylethanolamine zwitterion; 1-2-Di-(9-octadecenoyl)-sn-glycero-3-phosphoethethanolamine; 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine; 1,2-Di(9Z-octadecenoyl)-rac-glycero-3-phosphoethanolamine; 1,2-Dioleoyl-rac-glycero-3-phosphoethanolamine; 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine; 1,2-Dioleoylglycero-3-phosphoethanolamine; 1,2-Dielaidoylphosphatidylethanolamine; 1,2-Dioleoylphosphatidylethanolamine; Phophatidylethanolamine(18:1/18:1); Phophatidylethanolamine(36:2); PE(18:1(9Z)/18:1(9Z)); 1,2-Dioleoyl-sn-gl; Dioleoyl cephalin; GPEtn(18:1/18:1); PE(18:1/18:1); GPEtn(36:2); Lipofectin; 1-2-DOPE; 1,2-DOPE; PE(36:2); DOPE
数据库引用编号
8 个数据库交叉引用编号
- ChEBI: CHEBI:84839
- PubChem: 9546757
- PubChem: 108229
- HMDB: HMDB0009059
- MetaCyc: CPD-8291
- foodb: FDB026249
- CAS: 4004-05-1
- PMhub: MS000015405
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
51 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(51)
- Phosphatidylcholine Biosynthesis PC(18:1(9Z)/18:1(9Z)):
Hydrogen Ion + L-Serine ⟶ Carbon dioxide + Ethanolamine
- Phosphatidylethanolamine Biosynthesis PE(18:1(9Z)/18:1(9Z)):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + PS(18:1(9Z)/18:1(9Z))
- phospholipid biosynthesis CL(16:1(9Z)/16:1(9Z)/18:1(9Z)/18:1(9Z)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis CL(16:1(9Z)/18:1(9Z)/18:1(9Z)/16:1(9Z)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/16:0/18:1(9Z)/18:1(9Z))):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis CL(16:0/18:1(9Z)/16:0/18:1(9Z)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis CL(16:0/18:1(9Z)/18:1(9Z)/16:1(9Z)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis CL(16:1(9Z)/18:1(9Z)/16:1(9Z)/18:1(9Z)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- Lysolipid Incorporation into ER PC(18:1(9Z)/18:1(9Z)):
Glycerophosphocholine + Water ⟶ Choline + Glycerol 3-phosphate + Hydrogen Ion
- Lysolipid incorporation into Mitochondria PC(18:1(9Z)/18:1(9Z)):
Adenosine triphosphate + LysoPC(18:1(9Z)) + Water ⟶ Adenosine diphosphate + LysoPC(18:1(9Z)) + Phosphate
- Phosphatidylcholine biosynthesis PC(18:1(9Z)/18:1(9Z)):
PE(18:1(9Z)/18:1(9Z)) + S-Adenosylmethionine ⟶ Hydrogen Ion + PE-NMe(18:1(9Z)/18:1(9Z)) + S-Adenosylhomocysteine
- Phosphatidylcholine Biosynthesis PC(18:1(9Z)/18:1(9Z)):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(18:1(9Z)/18:1(9Z)):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(18:1(9Z)/18:1(9Z)):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(18:1(9Z)/18:1(9Z)):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- phospholipid biosynthesis CL(16:0/18:1(9Z)/18:1(9Z)/16:0):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis CL(16:0/16:0/18:1(9Z)/18:1(9Z)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/18:1(9Z)/18:1(9Z)):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- phospholipid biosynthesis CL(14:0/18:1(9Z)/14:0/18:1(9Z)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis CL(15:0cyclo/14:0/18:1(9Z)/18:1(9Z)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/15:0cyclo/17:0cycw7c/18:1(9Z))):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/15:0cyclo/18:1(9Z)/17:0cycw7c)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- phospholipid biosynthesis (CL(18:1(9Z)/16:1(9Z)/18:1(9Z)/18:1(9Z))):
PE(18:1(9Z)/18:1(9Z)) + PG(18:1(9Z)/16:1(9Z)) ⟶ CL(18:1(9Z)/16:1(9Z)/18:1(9Z)/18:1(9Z)) + Ethanolamine
- Phosphatidylethanolamine Biosynthesis PE(18:1(9Z)/18:1(9Z)):
L-Serine + PC(18:1(9Z)/18:1(9Z)) ⟶ Choline + PS(18:1(9Z)/18:1(9Z))
- Phosphatidylethanolamine Biosynthesis PE(18:1(9Z)/18:1(9Z)):
L-Serine + PC(18:1(9Z)/18:1(9Z)) ⟶ Choline + PS(18:1(9Z)/18:1(9Z))
- Phosphatidylethanolamine Biosynthesis PE(18:1(9Z)/18:1(9Z)):
L-Serine + PC(18:1(9Z)/18:1(9Z)) ⟶ Choline + PS(18:1(9Z)/18:1(9Z))
- Phosphatidylethanolamine Biosynthesis PE(18:1(9Z)/18:1(9Z)):
L-Serine + PC(18:1(9Z)/18:1(9Z)) ⟶ Choline + PS(18:1(9Z)/18:1(9Z))
- Array:
L-Serine + PC(18:1(9Z)/18:1(9Z)) ⟶ Choline + PS(18:1(9Z)/18:1(9Z))
- Array:
L-Serine + PC(18:1(9Z)/18:1(9Z)) ⟶ Choline + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/18:1(9Z)/19:0cycw7):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/19:0cycw7/15:0cycw5):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/19:0cycw7/16:0):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/19:0cycw7/17:0cycw7):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/19:0cycw7/16:1(9Z)):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/14:0/14:0):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/14:0/15:0cycw5):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/14:0/16:0):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/14:0/16:1(9Z)):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/14:0/17:0cycw7):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/14:0/18:1(9Z)):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/14:0/19:0cycw7):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/17:0cycw7/14:0):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/17:0cycw7/15:0cycw5):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/17:0cycw7/16:0):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/17:0cycw7/16:1(9Z)):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/17:0cycw7/17:0cycw7):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/17:0cycw7/18:1(9Z)):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/17:0cycw7/19:0cycw7):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/18:1(9Z)/14:0):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/18:1(9Z)/17:0cycw7):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
- Phospholipid Biosynthesis CL(18:1(9Z)/18:1(9Z)/19:0cycw7/14:0):
CDP-DG(18:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(18:1(9Z)/18:1(9Z))
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Keigo Murakami, Masashi Sato, Yoshiya Miyasaka, Kuniyuki Hatori. Selective association of desmin intermediate filaments with a phospholipid layer in droplets.
Biochemical and biophysical research communications.
2021 05; 555(?):109-114. doi:
10.1016/j.bbrc.2021.03.131
. [PMID: 33813269] - Feng Xue, Charles D Cox, Navid Bavi, Paul R Rohde, Yoshitaka Nakayama, Boris Martinac. Membrane stiffness is one of the key determinants of E. coli MscS channel mechanosensitivity.
Biochimica et biophysica acta. Biomembranes.
2020 05; 1862(5):183203. doi:
10.1016/j.bbamem.2020.183203
. [PMID: 31981589] - Seong-Eun Kim, Jin-Won Park. Analysis of interactions between cinnamycin and biomimetic membranes.
Colloids and surfaces. B, Biointerfaces.
2020 Jan; 185(?):110595. doi:
10.1016/j.colsurfb.2019.110595
. [PMID: 31735419] - Waleed M Hussein, Yee S Cheong, Chang Liu, Genan Liu, Anjuman Ara Begum, Maria Adly Attallah, Peter M Moyle, Vladimir P Torchilin, Roger Smith, Istvan Toth. Peptide-based targeted polymeric nanoparticles for siRNA delivery.
Nanotechnology.
2019 Oct; 30(41):415604. doi:
10.1088/1361-6528/ab313d
. [PMID: 31295734] - Anindita Mahapatra, Sukanya Sarkar, Subhash Chandra Biswas, Krishnananda Chattopadhyay. An aminoglycoside antibiotic inhibits both lipid-induced and solution-phase fibrillation of α-synuclein in vitro.
Chemical communications (Cambridge, England).
2019 Sep; 55(74):11052-11055. doi:
10.1039/c9cc04251b
. [PMID: 31453599] - Yoshiya Miyasaka, Keigo Murakami, Koji Ito, Jiro Kumaki, Koki Makabe, Kuniyuki Hatori. Condensed desmin and actin cytoskeletal communication in lipid droplets.
Cytoskeleton (Hoboken, N.J.).
2019 09; 76(9-10):477-490. doi:
10.1002/cm.21573
. [PMID: 31626391] - Elaheh Sadat Hosseini, Maryam Nikkhah, Saman Hosseinkhani. Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9.
International journal of nanomedicine.
2019; 14(?):4353-4366. doi:
10.2147/ijn.s199104
. [PMID: 31354265] - Saeed Mortezazadeh, Yousef Jamali, Hossein Naderi-Manesh, Alexander P Lyubartsev. Implicit solvent systematic coarse-graining of dioleoylphosphatidylethanolamine lipids: From the inverted hexagonal to the bilayer structure.
PloS one.
2019; 14(4):e0214673. doi:
10.1371/journal.pone.0214673
. [PMID: 30951539] - Laila Kudsiova, Atefeh Mohammadi, M Firouz Mohd Mustapa, Frederick Campbell, Katharina Welser, Danielle Vlaho, Harriet Story, David J Barlow, Alethea B Tabor, Helen C Hailes, M Jayne Lawrence. Trichain cationic lipids: the potential of their lipoplexes for gene delivery.
Biomaterials science.
2018 Dec; 7(1):149-158. doi:
10.1039/c8bm00965a
. [PMID: 30357152] - Patrick M Arnott, Himanshu Joshi, Aleksei Aksimentiev, Stefan Howorka. Dynamic Interactions between Lipid-Tethered DNA and Phospholipid Membranes.
Langmuir : the ACS journal of surfaces and colloids.
2018 12; 34(49):15084-15092. doi:
10.1021/acs.langmuir.8b02271
. [PMID: 30350681] - Maria Soler, Xiaokang Li, Aurelian John-Herpin, Julien Schmidt, George Coukos, Hatice Altug. Two-Dimensional Label-Free Affinity Analysis of Tumor-Specific CD8 T Cells with a Biomimetic Plasmonic Sensor.
ACS sensors.
2018 11; 3(11):2286-2295. doi:
10.1021/acssensors.8b00523
. [PMID: 30339020] - Adam J R Gadd, Valeria Castelletto, Elena Kabova, Kenneth Shankland, Yvonne Perrie, Ian Hamley, Alexander J A Cobb, F Greco, Alexander D Edwards. High potency of lipid conjugated TLR7 agonist requires nanoparticulate or liposomal formulation.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2018 Oct; 123(?):268-276. doi:
10.1016/j.ejps.2018.07.048
. [PMID: 30048801] - Yaning Zhong, Gufeng Wang. Three-Dimensional Heterogeneous Structure Formation on a Supported Lipid Bilayer Disclosed by Single-Particle Tracking.
Langmuir : the ACS journal of surfaces and colloids.
2018 10; 34(39):11857-11865. doi:
10.1021/acs.langmuir.8b01690
. [PMID: 30170491] - Susann Spindler, Jeremias Sibold, Reza Gholami Mahmoodabadi, Claudia Steinem, Vahid Sandoghdar. High-Speed Microscopy of Diffusion in Pore-Spanning Lipid Membranes.
Nano letters.
2018 08; 18(8):5262-5271. doi:
10.1021/acs.nanolett.8b02240
. [PMID: 30047737] - Mingming Wang, Zening Liu, Wei Zhan. Janus Liposomes: Gel-Assisted Formation and Bioaffinity-Directed Clustering.
Langmuir : the ACS journal of surfaces and colloids.
2018 06; 34(25):7509-7518. doi:
10.1021/acs.langmuir.8b00798
. [PMID: 29852065] - Venkanna Muripiti, Hari Krishnareddy Rachamalla, Rajkumar Banerjee, Srilakshmi V Patri. α-Tocopherol-based cationic amphiphiles with a novel pH sensitive hybrid linker for gene delivery.
Organic & biomolecular chemistry.
2018 04; 16(16):2932-2946. doi:
10.1039/c8ob00276b
. [PMID: 29623327] - Tomoyuki Nishizaki. Dioleoylphosphoethanolamine Retains Cell Surface GLUT4 by Inhibiting PKCα-Driven Internalization.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2018; 46(5):1985-1998. doi:
10.1159/000489439
. [PMID: 29723855] - Baoji Du, Xiaoxiao Gu, Xu Han, Guanyu Ding, Yuling Wang, Dan Li, Erkang Wang, Jin Wang. Lipid-Coated Gold Nanoparticles Functionalized by Folic Acid as Gene Vectors for Targeted Gene Delivery in vitro and in vivo.
ChemMedChem.
2017 11; 12(21):1768-1775. doi:
10.1002/cmdc.201700391
. [PMID: 28967206] - Hui Li, Janamejaya Chowdhary, Lei Huang, Xibing He, Alexander D MacKerell, Benoît Roux. Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids.
Journal of chemical theory and computation.
2017 Sep; 13(9):4535-4552. doi:
10.1021/acs.jctc.7b00262
. [PMID: 28731702] - Christopher Janich, Shashank Reddy Pinnapireddy, Frank Erdmann, Thomas Groth, Andreas Langner, Udo Bakowsky, Christian Wölk. Fast therapeutic DNA internalization - A high potential transfection system based on a peptide mimicking cationic lipid.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2017 Sep; 118(?):38-47. doi:
10.1016/j.ejpb.2016.12.007
. [PMID: 27993732] - Andrei Yu Kostritskii, Diana A Kondinskaia, Alexey M Nesterenko, Andrey A Gurtovenko. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations.
Langmuir : the ACS journal of surfaces and colloids.
2016 10; 32(40):10402-10414. doi:
10.1021/acs.langmuir.6b02593
. [PMID: 27642663] - Su Jeong Song, Seulgi Lee, Yan Lee, Joon Sig Choi. Enzyme-responsive destabilization of stabilized plasmid-lipid nanoparticles as an efficient gene delivery.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2016 Aug; 91(?):20-30. doi:
10.1016/j.ejps.2016.05.024
. [PMID: 27240779] - Mallikarjun Gosangi, Thasneem Yoosuf Mujahid, Vijaya Gopal, Srilakshmi V Patri. Effects of heterocyclic-based head group modifications on the structure-activity relationship of tocopherol-based lipids for non-viral gene delivery.
Organic & biomolecular chemistry.
2016 Jul; 14(28):6857-70. doi:
10.1039/c6ob00974c
. [PMID: 27348545] - Hirokazu Watanabe, Ryuji Kawano. Channel Current Analysis for Pore-forming Properties of an Antimicrobial Peptide, Magainin 1, Using the Droplet Contact Method.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2016; 32(1):57-60. doi:
10.2116/analsci.32.57
. [PMID: 26753706] - Norbert Pardi, Steven Tuyishime, Hiromi Muramatsu, Katalin Kariko, Barbara L Mui, Ying K Tam, Thomas D Madden, Michael J Hope, Drew Weissman. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.
Journal of controlled release : official journal of the Controlled Release Society.
2015 Nov; 217(?):345-51. doi:
10.1016/j.jconrel.2015.08.007
. [PMID: 26264835] - Emile Jubeli, Amanda B Maginty, Nada Abdul Khalique, Liji Raju, Mohamad Abdulhai, David G Nicholson, Helge Larsen, Michael D Pungente, William P D Goldring. Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation.
Bioorganic & medicinal chemistry.
2015 Oct; 23(19):6364-78. doi:
10.1016/j.bmc.2015.08.032
. [PMID: 26346671] - Hui-Bog Noh, Nanjanagudu Ganesh Gurudatt, Mi-Sook Won, Yoon-Bo Shim. Analysis of Phthalate Esters in Mammalian Cell Culture Using a Microfluidic Channel Coupled with an Electrochemical Sensor.
Analytical chemistry.
2015 Jul; 87(14):7069-77. doi:
10.1021/acs.analchem.5b00358
. [PMID: 26088015] - Ana L Barrán-Berdón, Belén Yélamos, Luis García-Río, Òscar Domènech, Emilio Aicart, Elena Junquera. Polycationic Macrocyclic Scaffolds as Potential Non-Viral Vectors of DNA: A Multidisciplinary Study.
ACS applied materials & interfaces.
2015 Jul; 7(26):14404-14. doi:
10.1021/acsami.5b03231
. [PMID: 26067709] - Kaori Sugihara, Amin Rustom, Joachim P Spatz. Freely drawn single lipid nanotube patterns.
Soft matter.
2015 Mar; 11(10):2029-35. doi:
10.1039/c5sm00043b
. [PMID: 25626419] - Jia Ju, Meng-Lei Huan, Ning Wan, Hai Qiu, Si-Yuan Zhou, Bang-Le Zhang. Novel cholesterol-based cationic lipids as transfecting agents of DNA for efficient gene delivery.
International journal of molecular sciences.
2015 Mar; 16(3):5666-81. doi:
10.3390/ijms16035666
. [PMID: 25768346] - Conghui Chen, Haiyang Hu, Mingxi Qiao, Xiuli Zhao, Yinjie Wang, Kang Chen, Xiong Guo, Dawei Chen. Tumor-targeting and pH-sensitive lipoprotein-mimic nanocarrier for targeted intracellular delivery of paclitaxel.
International journal of pharmaceutics.
2015 Mar; 480(1-2):116-27. doi:
10.1016/j.ijpharm.2015.01.036
. [PMID: 25615984] - Oleg V Markov, Nadezhda L Mironova, Sergey V Sennikov, Valentin V Vlassov, Marina A Zenkova. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma.
PloS one.
2015; 10(9):e0136911. doi:
10.1371/journal.pone.0136911
. [PMID: 26325576] - Sridevi Gorle, Mario Ariatti, Moganavelli Singh. Novel serum-tolerant lipoplexes target the folate receptor efficiently.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2014 Aug; 59(?):83-93. doi:
10.1016/j.ejps.2014.04.012
. [PMID: 24769039] - Li Gu, Leora M Nusblat, Nasim Tishbi, Sarah C Noble, Chaya M Pinson, Evan Mintzer, Charles M Roth, Kathryn E Uhrich. Cationic amphiphilic macromolecule (CAM)-lipid complexes for efficient siRNA gene silencing.
Journal of controlled release : official journal of the Controlled Release Society.
2014 Jun; 184(?):28-35. doi:
10.1016/j.jconrel.2014.04.005
. [PMID: 24727076] - Maroof M Adil, Zachary S Erdman, Efrosini Kokkoli. Transfection mechanisms of polyplexes, lipoplexes, and stealth liposomes in α₅β₁ integrin bearing DLD-1 colorectal cancer cells.
Langmuir : the ACS journal of surfaces and colloids.
2014 Apr; 30(13):3802-10. doi:
10.1021/la5001396
. [PMID: 24635537] - Gabriela Québatte, Eric Kitas, Joachim Seelig. riDOM, a cell penetrating peptide. Interaction with phospholipid bilayers.
Biochimica et biophysica acta.
2014 Mar; 1838(3):968-77. doi:
10.1016/j.bbamem.2013.10.017
. [PMID: 24184424] - Iwan Setiawan, G J Blanchard. Ethanol-induced perturbations to planar lipid bilayer structures.
The journal of physical chemistry. B.
2014 Jan; 118(2):537-46. doi:
10.1021/jp410305m
. [PMID: 24372563] - Susana Machado, Sofia Calado, Diogo Bitoque, Ana Vanessa Oliveira, Christer L Øpstad, Muhammad Zeeshan, Hans-Richard Sliwka, Vassilia Partali, Michael D Pungente, Gabriela A Silva. Cationic polyene phospholipids as DNA carriers for ocular gene therapy.
BioMed research international.
2014; 2014(?):703253. doi:
10.1155/2014/703253
. [PMID: 25147812] - Shuo Sun, Ming Wang, Kyle A Alberti, Alex Choy, Qiaobing Xu. DOPE facilitates quaternized lipidoids (QLDs) for in vitro DNA delivery.
Nanomedicine : nanotechnology, biology, and medicine.
2013 Oct; 9(7):849-54. doi:
10.1016/j.nano.2013.01.006
. [PMID: 23428989] - Urara Tomita, Satoshi Yamaguchi, Yasukazu Maeda, Kazuki Chujo, Kosuke Minamihata, Teruyuki Nagamune. Protein cell-surface display through in situ enzymatic modification of proteins with a poly(Ethylene glycol)-lipid.
Biotechnology and bioengineering.
2013 Oct; 110(10):2785-9. doi:
10.1002/bit.24933
. [PMID: 23592269] - Akiko Suganami, Taro Toyota, Shigetoshi Okazaki, Kengo Saito, Katsuhiko Miyamoto, Yasunori Akutsu, Hiroshi Kawahira, Akira Aoki, Yutaka Muraki, Tomoyuki Madono, Hideki Hayashi, Hisahiro Matsubara, Takashige Omatsu, Hiroshi Shirasawa, Yutaka Tamura. Preparation and characterization of phospholipid-conjugated indocyanine green as a near-infrared probe.
Bioorganic & medicinal chemistry letters.
2012 Dec; 22(24):7481-5. doi:
10.1016/j.bmcl.2012.10.044
. [PMID: 23122858] - Kaori Sugihara, Janick Stucki, Lucio Isa, János Vörös, Tomaso Zambelli. Electrically induced lipid migration in non-lamellar phase.
Journal of colloid and interface science.
2012 Nov; 386(1):421-7. doi:
10.1016/j.jcis.2012.04.031
. [PMID: 22959151] - Enkhzaya Davaa, Jeong-Sook Park. Formulation parameters influencing the physicochemical characteristics of rosiglitazone-loaded cationic lipid emulsion.
Archives of pharmacal research.
2012 Jul; 35(7):1205-13. doi:
10.1007/s12272-012-0711-9
. [PMID: 22864743] - Xiaoli Sun, Chunxi Liu, Donghua Liu, Peng Li, Na Zhang. Novel biomimetic vectors with endosomal-escape agent enhancing gene transfection efficiency.
International journal of pharmaceutics.
2012 Apr; 425(1-2):62-72. doi:
10.1016/j.ijpharm.2012.01.010
. [PMID: 22266532] - Peter L Cook, Joshua L Vanderhill, Alexis E Cook, David W Van Norstrand, Mark T Gordon, Paul E Harper. Light scattering measurement and Avrami analysis of the lamellar to inverse hexagonal phase transition kinetics of the lipid DEPE.
Chemistry and physics of lipids.
2012 Apr; 165(3):270-6. doi:
10.1016/j.chemphyslip.2012.01.010
. [PMID: 22342323] - Daniel R Stabley, Carol Jurchenko, Stephen S Marshall, Khalid S Salaita. Visualizing mechanical tension across membrane receptors with a fluorescent sensor.
Nature methods.
2011 Oct; 9(1):64-7. doi:
10.1038/nmeth.1747
. [PMID: 22037704] - Michela Pisani, Giovanna Mobbili, Immacolata F Placentino, Arianna Smorlesi, Paolo Bruni. Biophysical characterization of complexes of DNA with mixtures of the neutral lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-hexanoylamine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-dodecanoylamine and 1,2-dioleoyl-sn-glycero-3-phosphocholine in the presence of bivalent metal cations for DNA transfection.
The journal of physical chemistry. B.
2011 Sep; 115(34):10198-206. doi:
10.1021/jp202577u
. [PMID: 21790167] - Alexander M Harmon, Melissa H Lash, Nasim Tishbi, Danielle Lent, Evan A Mintzer, Kathryn E Uhrich. Thermodynamic and physical interactions between novel polymeric surfactants and lipids: toward designing stable polymer-lipid complexes.
Langmuir : the ACS journal of surfaces and colloids.
2011 Aug; 27(15):9131-8. doi:
10.1021/la200038a
. [PMID: 21732646] - Stanley W Botchway, Amanda M Lewis, Christopher D Stubbs. Development of fluorophore dynamics imaging as a probe for lipid domains in model vesicles and cell membranes.
European biophysics journal : EBJ.
2011 Feb; 40(2):131-41. doi:
10.1007/s00249-010-0631-x
. [PMID: 20953783] - Angel Pérez-Lara, Alessio Ausili, Francisco J Aranda, Ana de Godos, Alejandro Torrecillas, Senena Corbalán-García, Juan C Gómez-Fernández. Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine.
The journal of physical chemistry. B.
2010 Aug; 114(30):9778-86. doi:
10.1021/jp101045p
. [PMID: 20666521] - Radka Vladkova, Rumiana Koynova, Klaus Teuchner, Boris Tenchov. Bilayer structural destabilization by low amounts of chlorophyll a.
Biochimica et biophysica acta.
2010 Aug; 1798(8):1586-92. doi:
10.1016/j.bbamem.2010.05.008
. [PMID: 20478266] - Rui Maeda-Mamiya, Eisei Noiri, Hiroyuki Isobe, Waka Nakanishi, Koji Okamoto, Kent Doi, Takeshi Sugaya, Tetsuro Izumi, Tatsuya Homma, Eiichi Nakamura. In vivo gene delivery by cationic tetraamino fullerene.
Proceedings of the National Academy of Sciences of the United States of America.
2010 Mar; 107(12):5339-44. doi:
10.1073/pnas.0909223107
. [PMID: 20194788] - Anna Kułakowska, Piotr Jurkiewicz, Jan Sýkora, Ales Benda, Yves Mely, Martin Hof. Fluorescence lifetime tuning--a novel approach to study flip-flop kinetics in supported phospholipid bilayers.
Journal of fluorescence.
2010 Mar; 20(2):563-9. doi:
10.1007/s10895-009-0581-9
. [PMID: 20039107] - Shinichiro Kato, Keiichi Koizumi, Miyuki Yamada, Akiko Inujima, Nobuhiro Takeno, Tsuyoshi Nakanishi, Hiroaki Sakurai, Shinsaku Nakagawa, Ikuo Saiki. A phagocytotic inducer from herbal constituent, pentagalloylglucose enhances lipoplex-mediated gene transfection in dendritic cells.
Biological & pharmaceutical bulletin.
2010; 33(11):1878-85. doi:
10.1248/bpb.33.1878
. [PMID: 21048315] - Yan Yu, Steve Granick. Pearling of lipid vesicles induced by nanoparticles.
Journal of the American Chemical Society.
2009 Oct; 131(40):14158-9. doi:
10.1021/ja905900h
. [PMID: 19775107] - Aaron J Greiner, Heather A Pillman, R M Worden, G J Blanchard, R Y Ofoli. Effect of hydrogen bonding on the rotational and translational dynamics of a headgroup-bound chromophore in bilayer lipid membranes.
The journal of physical chemistry. B.
2009 Oct; 113(40):13263-8. doi:
10.1021/jp9057862
. [PMID: 19761197] - Marcos García-Pacios, M Isabel Collado, Jon V Busto, Jesús Sot, Alicia Alonso, José-Luis R Arrondo, Félix M Goñi. Sphingosine-1-phosphate as an amphipathic metabolite: its properties in aqueous and membrane environments.
Biophysical journal.
2009 Sep; 97(5):1398-407. doi:
10.1016/j.bpj.2009.07.001
. [PMID: 19720028] - Michalakis Savva, Samuel Acheampong. The interaction energies of cholesterol and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine in spread mixed monolayers at the air-water interface.
The journal of physical chemistry. B.
2009 Jul; 113(29):9811-20. doi:
10.1021/jp902748s
. [PMID: 19569618] - A Masotti, G Mossa, C Cametti, G Ortaggi, A Bianco, N Del Grosso, D Malizia, C Esposito. Comparison of different commercially available cationic liposome-DNA lipoplexes: Parameters influencing toxicity and transfection efficiency.
Colloids and surfaces. B, Biointerfaces.
2009 Feb; 68(2):136-44. doi:
10.1016/j.colsurfb.2008.09.017
. [PMID: 18993036] - Jennifer Xavier, Shashi Singh, David A Dean, N Madhusudhana Rao, Vijaya Gopal. Designed multi-domain protein as a carrier of nucleic acids into cells.
Journal of controlled release : official journal of the Controlled Release Society.
2009 Jan; 133(2):154-60. doi:
10.1016/j.jconrel.2008.09.090
. [PMID: 18940210] - Julia Lehtinen, Zanna Hyvönen, Astrid Subrizi, Heike Bunjes, Arto Urtti. Glycosaminoglycan-resistant and pH-sensitive lipid-coated DNA complexes produced by detergent removal method.
Journal of controlled release : official journal of the Controlled Release Society.
2008 Oct; 131(2):145-9. doi:
10.1016/j.jconrel.2008.07.018
. [PMID: 18691618] - Giuseppe De Rosa, Daniela De Stefano, Valeria Laguardia, Silvia Arpicco, Vittorio Simeon, Rosa Carnuccio, Elias Fattal. Novel cationic liposome formulation for the delivery of an oligonucleotide decoy to NF-kappaB into activated macrophages.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2008 Sep; 70(1):7-18. doi:
10.1016/j.ejpb.2008.03.012
. [PMID: 18482831] - Tomoko Murakawa, Shin'ichiro Kajiyama, Tomohiko Ikeuchi, Shigeki Kawakami, Kiichi Fukui. Improvement of transformation efficiency by bioactive-beads-mediated gene transfer using DNA-lipofectin complex as entrapped genetic material.
Journal of bioscience and bioengineering.
2008 Jan; 105(1):77-80. doi:
10.1263/jbb.105.77
. [PMID: 18295726] - Bernardina T F van der Gun, Amélie Monami, Sven Laarmann, Tamás Raskó, Krystyna Slaska-Kiss, Elmar Weinhold, Reinhold Wasserkort, Lou F M H de Leij, Marcel H J Ruiters, Antal Kiss, Pamela M J McLaughlin. Serum insensitive, intranuclear protein delivery by the multipurpose cationic lipid SAINT-2.
Journal of controlled release : official journal of the Controlled Release Society.
2007 Nov; 123(3):228-38. doi:
10.1016/j.jconrel.2007.08.014
. [PMID: 17884225] - M Firouz Mohd Mustapa, Paul C Bell, Christopher A Hurley, Alastair Nicol, Erwann Guénin, Supti Sarkar, Michele J Writer, Susie E Barker, John B Wong, Michael A Pilkington-Miksa, Brigitte Papahadjopoulos-Sternberg, Parviz Ayazi Shamlou, Helen C Hailes, Stephen L Hart, Daniel Zicha, Alethea B Tabor. Biophysical characterization of an integrin-targeted lipopolyplex gene delivery vector.
Biochemistry.
2007 Nov; 46(45):12930-44. doi:
10.1021/bi701014y
. [PMID: 17935306] - Mark Saunders, Kevin M G Taylor, Duncan Q M Craig, Karen Palin, Hazel Robson. High sensitivity differential scanning calorimetry study of DNA-cationic liposome complexes.
Pharmaceutical research.
2007 Oct; 24(10):1954-61. doi:
10.1007/s11095-007-9325-1
. [PMID: 17551810] - Chuanzhong Wang, Xingfu Li, Shawn D Wettig, Ildiko Badea, Marianna Foldvari, Ronald E Verrall. Investigation of complexes formed by interaction of cationic gemini surfactants with deoxyribonucleic acid.
Physical chemistry chemical physics : PCCP.
2007 Apr; 9(13):1616-28. doi:
10.1039/b618579g
. [PMID: 17429555] - S R Bhattarai, S Y Kim, K Y Jang, H K Yi, Y H Lee, N Bhattarai, S-Y Nam, D Y Lee, H Y Kim, P H Hwang. Amphiphilic triblock copolymer poly(p-dioxanone-co-L-lactide)-block-poly(ethylene glycol), enhancement of gene expression and inhibition of lung metastasis by aerosol delivery.
Gene therapy.
2007 Mar; 14(6):476-83. doi:
10.1038/sj.gt.3302876
. [PMID: 17122804] - Ronny Rüger, Dafne Müller, Alfred Fahr, Roland E Kontermann. In vitro characterization of binding and stability of single-chain Fv Ni-NTA-liposomes.
Journal of drug targeting.
2006 Sep; 14(8):576-82. doi:
10.1080/10611860600864018
. [PMID: 17050123] - Alejandro Torrecillas, J Daniel Aroca-Aguilar, Francisco J Aranda, Consuelo Gajate, Faustino Mollinedo, Senena Corbalán-García, Ana de Godos, Juan C Gómez-Fernández. Effects of the anti-neoplastic agent ET-18-OCH3 and some analogs on the biophysical properties of model membranes.
International journal of pharmaceutics.
2006 Aug; 318(1-2):28-40. doi:
10.1016/j.ijpharm.2006.03.008
. [PMID: 16624506] - Marina Sánchez, José A Teruel, María J Espuny, Ana Marqués, Francisco J Aranda, Angeles Manresa, Antonio Ortiz. Modulation of the physical properties of dielaidoylphosphatidylethanolamine membranes by a dirhamnolipid biosurfactant produced by Pseudomonas aeruginosa.
Chemistry and physics of lipids.
2006 Jul; 142(1-2):118-27. doi:
10.1016/j.chemphyslip.2006.04.001
. [PMID: 16678142] - Shanta Raj Bhattarai, Ho-Keun Yi, Narayan Bhattarai, Pyoung Han Hwang, Hak Yong Kim. Novel block copolymer (PPDO/PLLA-b-PEG): enhancement of DNA uptake and cell transfection.
Acta biomaterialia.
2006 Mar; 2(2):207-12. doi:
10.1016/j.actbio.2005.10.007
. [PMID: 16701879] - J Worthington, T Robson, S Scott, D Hirst. Evaluation of a synthetic CArG promoter for nitric oxide synthase gene therapy of cancer.
Gene therapy.
2005 Oct; 12(19):1417-23. doi:
10.1038/sj.gt.3302552
. [PMID: 15902277] - Sérgio S Funari, Jesús Prades, Pablo V Escribá, Francisca Barceló. Farnesol and geranylgeraniol modulate the structural properties of phosphatidylethanolamine model membranes.
Molecular membrane biology.
2005 Jul; 22(4):303-11. doi:
10.1080/09687860500135411
. [PMID: 16154902] - Jesús Sot, Francisco J Aranda, M-Isabel Collado, Félix M Goñi, Alicia Alonso. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study.
Biophysical journal.
2005 May; 88(5):3368-80. doi:
10.1529/biophysj.104.057851
. [PMID: 15695626] - Lars-Göran Bladh, Johan Lidén, Karin Dahlman-Wright, Mark Reimers, Stefan Nilsson, Sam Okret. Identification of endogenous glucocorticoid repressed genes differentially regulated by a glucocorticoid receptor mutant able to separate between nuclear factor-kappaB and activator protein-1 repression.
Molecular pharmacology.
2005 Mar; 67(3):815-26. doi:
10.1124/mol.104.005801
. [PMID: 15550679] - Charles R Allerson, Namir Sioufi, Russell Jarres, Thazha P Prakash, Nishant Naik, Andres Berdeja, Lisa Wanders, Richard H Griffey, Eric E Swayze, Balkrishen Bhat. Fully 2'-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA.
Journal of medicinal chemistry.
2005 Feb; 48(4):901-4. doi:
10.1021/jm049167j
. [PMID: 15715458] - Chantal A Reed, Eigen R Peralta, Lisa M Wenrich, Charlene A Wong, C Frank Bennett, Susan Freier, Bridget Lollo. Transfection protocol for antisense oligonucleotides affects uniformity of transfection in cell culture and efficiency of mRNA target reduction.
Oligonucleotides.
2005; 15(1):12-22. doi:
10.1089/oli.2005.15.12
. [PMID: 15788897] - Haike Dannowski, Jürgen Bednarz, Regina Reszka, Katrin Engelmann, Uwe Pleyer. Lipid-mediated gene transfer of acidic fibroblast growth factor into human corneal endothelial cells.
Experimental eye research.
2005 Jan; 80(1):93-101. doi:
10.1016/j.exer.2004.08.024
. [PMID: 15652530] - Patrick Farrell, Kostas Iatrou. Transfected insect cells in suspension culture rapidly yield moderate quantities of recombinant proteins in protein-free culture medium.
Protein expression and purification.
2004 Aug; 36(2):177-85. doi:
10.1016/j.pep.2004.03.010
. [PMID: 15249039] - Michele J Writer, Barry Marshall, Michael A Pilkington-Miksa, Susie E Barker, Marianne Jacobsen, Angelika Kritz, Paul C Bell, Douglas H Lester, Alethea B Tabor, Helen C Hailes, Nigel Klein, Stephen L Hart. Targeted gene delivery to human airway epithelial cells with synthetic vectors incorporating novel targeting peptides selected by phage display.
Journal of drug targeting.
2004 May; 12(4):185-93. doi:
10.1080/10611860410001724459
. [PMID: 15506167] - Qing-Hai Meng, Danielle Robinson, R Gisli Jenkins, Robin J McAnulty, Stephen L Hart. Efficient transfection of non-proliferating human airway epithelial cells with a synthetic vector system.
The journal of gene medicine.
2004 Feb; 6(2):210-21. doi:
10.1002/jgm.483
. [PMID: 14978774] - Robert E White, Richard Wade-Martins, Stephen L Hart, Jon Frampton, Bryan Huey, Ami Desai-Mehta, Karen M Cerosaletti, Patrick Concannon, Michael R James. Functional delivery of large genomic DNA to human cells with a peptide-lipid vector.
The journal of gene medicine.
2003 Oct; 5(10):883-892. doi:
10.1002/jgm.420
. [PMID: 14533197] - Karsten Hemmrich, Christoph V Suschek, Guido Lerzynski, Oliver Schnorr, Victoria Kolb-Bachofen. Specific iNOS-targeted antisense knockdown in endothelial cells.
American journal of physiology. Cell physiology.
2003 Aug; 285(2):C489-98. doi:
10.1152/ajpcell.00045.2003
. [PMID: 12660146] - Yadollah Omidi, Andrew J Hollins, Mustapha Benboubetra, Ross Drayton, Ibrahim F Benter, Saghir Akhtar. Toxicogenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells.
Journal of drug targeting.
2003 Jul; 11(6):311-23. doi:
10.1080/10611860310001636908
. [PMID: 14668052] - Lorne R Palmer, Tao Chen, Angela M I Lam, David B Fenske, Kim F Wong, Ian MacLachlan, Pieter R Cullis. Transfection properties of stabilized plasmid-lipid particles containing cationic PEG lipids.
Biochimica et biophysica acta.
2003 Apr; 1611(1-2):204-16. doi:
10.1016/s0005-2736(03)00058-0
. [PMID: 12659962] - Sérgio S Funari, Francisca Barceló, Pablo V Escribá. Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes.
Journal of lipid research.
2003 Mar; 44(3):567-75. doi:
10.1194/jlr.m200356-jlr200
. [PMID: 12562874] - Yisong Li, Weidong Tian, Dong Wang. [An experimental study on gene transfection of human interleukin-1 receptor antagonist gene into chondrocytes of temporomandibular joint].
Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology.
2003 Feb; 21(1):19-21. doi:
NULL
. [PMID: 12674613] - Maria Maszewska, Julien Leclaire, Marcin Cieslak, Barbara Nawrot, Andrzej Okruszek, Anne-Marie Caminade, Jean-Pierre Majoral. Water-soluble polycationic dendrimers with a phosphoramidothioate backbone: preliminary studies of cytotoxicity and oligonucleotide/plasmid delivery in human cell culture.
Oligonucleotides.
2003; 13(4):193-205. doi:
10.1089/154545703322460586
. [PMID: 15000835] - B Jahrsdörfer, R Jox, L Mühlenhoff, K Tschoep, A Krug, S Rothenfusser, G Meinhardt, B Emmerich, S Endres, G Hartmann. Modulation of malignant B cell activation and apoptosis by bcl-2 antisense ODN and immunostimulatory CpG ODN.
Journal of leukocyte biology.
2002 Jul; 72(1):83-92. doi:
NULL
. [PMID: 12101266] - Gilman E S Toombes, Adam C Finnefrock, Mark W Tate, Sol M Gruner. Determination of L(alpha)-H(II) phase transition temperature for 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine.
Biophysical journal.
2002 May; 82(5):2504-10. doi:
10.1016/s0006-3495(02)75593-8
. [PMID: 11964238] - Naijie Jing, Weijun Xiong, Yongli Guan, Luke Pallansch, Shimei Wang. Potassium-dependent folding: a key to intracellular delivery of G-quartet oligonucleotides as HIV inhibitors.
Biochemistry.
2002 Apr; 41(17):5397-403. doi:
10.1021/bi0120401
. [PMID: 11969399] - Stefanie Marx, Jörg Schilling, Erich Sackmann, Robijn Bruinsma. Helfrich repulsion and dynamical phase separation of multicomponent lipid bilayers.
Physical review letters.
2002 Apr; 88(13):138102. doi:
10.1103/physrevlett.88.138102
. [PMID: 11955128] - Gollapudi Venkata Srilakshmi, Joyeeta Sen, Arabinda Chaudhuri, Yerramsetti Ramadas, Nalam Madhusudhana Rao. Anchor-dependent lipofection with non-glycerol based cytofectins containing single 2-hydroxyethyl head groups.
Biochimica et biophysica acta.
2002 Feb; 1559(2):87-95. doi:
10.1016/s0005-2736(01)00442-4
. [PMID: 11853677] - Rajkumar Sunil Singh, Koushik Mukherjee, Rajkumar Banerjee, Arabinda Chaudhuri, Samik Kumar Hait, Satya Priya Moulik, Yerramsetti Ramadas, Amash Vijayalakshmi, Nalam Madhusudhana Rao. Anchor dependency for non-glycerol based cationic lipofectins: mixed bag of regular and anomalous transfection profiles.
Chemistry (Weinheim an der Bergstrasse, Germany).
2002 Feb; 8(4):900-9. doi:
10.1002/1521-3765(20020215)8:4<900::aid-chem900>3.0.co;2-x
. [PMID: 11857704] - Wagdy A Sawahel. The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation.
Cellular & molecular biology letters.
2002; 7(1):19-29. doi:
"
. [PMID: 11944047] - T Tanaka, S J Li, K Kinoshita, M Yamazaki. La(3+) stabilizes the hexagonal II (H(II)) phase in phosphatidylethanolamine membranes.
Biochimica et biophysica acta.
2001 Dec; 1515(2):189-201. doi:
10.1016/s0005-2736(01)00413-8
. [PMID: 11718674] - M Magnusson, S Magnusson, H Vallin, L Rönnblom, G V Alm. Importance of CpG dinucleotides in activation of natural IFN-alpha-producing cells by a lupus-related oligodeoxynucleotide.
Scandinavian journal of immunology.
2001 Dec; 54(6):543-50. doi:
10.1046/j.1365-3083.2001.01018.x
. [PMID: 11902329] - Y Wu, G L Fletcher. Efficacy of antifreeze protein types in protecting liposome membrane integrity depends on phospholipid class.
Biochimica et biophysica acta.
2001 Nov; 1524(1):11-6. doi:
10.1016/s0304-4165(00)00134-3
. [PMID: 11078953]