1-Oleoyl-2-stearoyl-sn-glycero-3-phosphocholine (BioDeep_00001874191)

   


代谢物信息卡片


1-Oleoyl-2-stearoyl-sn-glycero-3-phosphocholine

化学式: C44H86NO8P (787.6090726)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCCCCCCCCCCCCCCCCC(=O)OC(COC(=O)CCCCCCCC=CCCCCCCCC)COP(=O)([O-])OCC[N+](C)(C)C
InChI: InChI=1S/C44H86NO8P/c1-6-8-10-12-14-16-18-20-22-24-26-28-30-32-34-36-43(46)50-40-42(41-52-54(48,49)51-39-38-45(3,4)5)53-44(47)37-35-33-31-29-27-25-23-21-19-17-15-13-11-9-7-2/h20,22,42H,6-19,21,23-41H2,1-5H3/b22-20-/t42-/m1/s1

描述信息

A phosphatidylcholine 36:1 in which the phosphatidyl acyl groups at positions 1 and 2 are specified as oleoyl and stearoyl respectively.

同义名列表

1 个代谢物同义名

1-Oleoyl-2-stearoyl-sn-glycero-3-phosphocholine



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Smita P Soni, Jesse A Ward, Stephanie E Sen, Scott E Feller, Stephen R Wassall. Effect of trans unsaturation on molecular organization in a phospholipid membrane. Biochemistry. 2009 Nov; 48(46):11097-107. doi: 10.1021/bi901179r. [PMID: 19817487]
  • Hector Martinez-Seara, Tomasz Róg, Mikko Karttunen, Ilpo Vattulainen, Ramon Reigada. Why is the sn-2 chain of monounsaturated glycerophospholipids usually unsaturated whereas the sn-1 chain is saturated? Studies of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and 1-oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (OSPC) membranes with and without cholesterol. The journal of physical chemistry. B. 2009 Jun; 113(24):8347-56. doi: 10.1021/jp902131b. [PMID: 19469492]
  • Kaori Tada, Eri Miyazaki, Masaki Goto, Nobutake Tamai, Hitoshi Matsuki, Shoji Kaneshina. Barotropic and thermotropic bilayer phase behavior of positional isomers of unsaturated mixed-chain phosphatidylcholines. Biochimica et biophysica acta. 2009 May; 1788(5):1056-63. doi: 10.1016/j.bbamem.2009.02.008. [PMID: 19233121]
  • Victor C Diculescu, Ana-Maria Chiorcea-Paquim, Laura Tugulea, Marilene Vivan, Ana-Maria Oliveira-Brett. Interaction of imatinib with liposomes: voltammetric and AFM characterization. Bioelectrochemistry (Amsterdam, Netherlands). 2009 Feb; 74(2):278-88. doi: 10.1016/j.bioelechem.2008.10.003. [PMID: 19119081]
  • Andreas Jerlich, R Jörg Schaur, Andrew R Pitt, Corinne M Spickett. The formation of phosphatidylcholine oxidation products by stimulated phagocytes. Free radical research. 2003 Jun; 37(6):645-53. doi: 10.1080/1071576031000091720. [PMID: 12868491]
  • Z Kóta, M Debreczeny, B Szalontai. Separable contributions of ordered and disordered lipid fatty acyl chain segments to nuCH2 bands in model and biological membranes: a Fourier transform infrared spectroscopic study. Biospectroscopy. 1999; 5(3):169-78. doi: 10.1002/(sici)1520-6343(1999)5:3<169::aid-bspy6>3.0.co;2-#. [PMID: 10380083]
  • M J Mathiesen, M Christiansen, K Hansen, A Holm, E Asbrink, M Theisen. Peptide-based OspC enzyme-linked immunosorbent assay for serodiagnosis of Lyme borreliosis. Journal of clinical microbiology. 1998 Dec; 36(12):3474-9. doi: 10.1128/jcm.36.12.3474-3479.1998. [PMID: 9817857]
  • T G Redgrave, V Rakic, B C Mortimer, J C Mamo. Effects of sphingomyelin and phosphatidylcholine acyl chains on the clearance of triacylglycerol-rich lipoproteins from plasma. Studies with lipid emulsions in rats. Biochimica et biophysica acta. 1992 Jun; 1126(1):65-72. doi: 10.1016/0005-2760(92)90218-k. [PMID: 1606176]