3-Amino-1,4-dimethyl-5H-pyrido(4,3-b)indole (BioDeep_00001868633)

Main id: BioDeep_00000012745

 


代谢物信息卡片


3-Amino-1,4-dimethyl-5H-pyrido(4,3-b)indole

化学式: C13H13N3 (211.1109)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=C2C(=C(N=C1N)C)C3=CC=CC=C3N2
InChI: InChI=1S/C13H13N3/c1-7-12-11(8(2)15-13(7)14)9-5-3-4-6-10(9)16-12/h3-6,16H,1-2H3,(H2,14,15)

描述信息

D009676 - Noxae > D009153 - Mutagens

同义名列表

2 个代谢物同义名

3-Amino-1,4-dimethyl-5H-pyrido(4,3-b)indole; Trp-P-1



数据库引用编号

6 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Falco Beer, Felix Urbat, Charles M A P Franz, Melanie Huch, Sabine E Kulling, Mirko Bunzel, Diana Bunzel. The Human Fecal Microbiota Metabolizes Foodborne Heterocyclic Aromatic Amines by Reuterin Conjugation and Further Transformations. Molecular nutrition & food research. 2019 05; 63(10):e1801177. doi: 10.1002/mnfr.201801177. [PMID: 30815965]
  • Fernando De Andrés, Mohammed Zougagh, Gregorio Castañeda, José Luis Sánchez-Rojas, Angel Ríos. Screening of non-polar heterocyclic amines in urine by microextraction in packed sorbent-fluorimetric detection and confirmation by capillary liquid chromatography. Talanta. 2011 Feb; 83(5):1562-7. doi: 10.1016/j.talanta.2010.11.060. [PMID: 21238752]
  • Hironori Tsuchiya. Comparative Effects of α-, β-, and γ-Carbolines on Platelet Aggregation and Lipid Membranes. Journal of toxicology. 2011; 2011(?):151596. doi: 10.1155/2011/151596. [PMID: 21876689]
  • Hala A Awney, Heba Sindi. The effect of rosemary on the mutagenic activity of heterocyclic amines extracted from common food consumed in Saudi Arabia. International journal of food sciences and nutrition. 2010 Mar; 61(2):192-203. doi: 10.3109/09637480903294953. [PMID: 19939197]
  • Yoshiharu Okuno, Mitsuo Miyazawa. Suppressive components in rice husk against mutagens-induced SOS response using Salmonella typhimurium TA1535/pSK1002 umu test. Natural product research. 2007 Jul; 21(9):805-9. doi: 10.1080/14786410701256358. [PMID: 17654284]
  • Masakuni Degawa, Koji Hanaki, Masashi Sekimoto. A hepatocarcinogenic tryptophan-pyrolyzate component, Trp-P-1, decreases serum total testosterone level and induces hepatic Cyp1a2 in male mice. Cancer science. 2006 Jan; 97(1):32-7. doi: 10.1111/j.1349-7006.2006.00140.x. [PMID: 16367918]
  • Antonius E van Herwaarden, Els Wagenaar, Barbara Karnekamp, Gracia Merino, Johan W Jonker, Alfred H Schinkel. Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis. 2006 Jan; 27(1):123-30. doi: 10.1093/carcin/bgi176. [PMID: 16000399]
  • Nobuyuki Sera, Kunimasa Morita, Masami Nagasoe, Hisako Tokieda, Taeko Kitaura, Hiroshi Tokiwa. Binding effect of polychlorinated compounds and environmental carcinogens on rice bran fiber. The Journal of nutritional biochemistry. 2005 Jan; 16(1):50-8. doi: 10.1016/j.jnutbio.2004.09.005. [PMID: 15629241]
  • Chi-Hao Wu, Gow-Chin Yen. Antigenotoxic properties of Cassia tea (Cassia tora L.): mechanism of action and the influence of roasting process. Life sciences. 2004 Nov; 76(1):85-101. doi: 10.1016/j.lfs.2004.07.011. [PMID: 15501482]
  • Kiyoka Higashi-Okai, Keiko Kanbara, Kanako Amano, Akiko Hagiwara, Chie Sugita, Norie Matsumoto, Yasuji Okai. Potent antioxidative and antigenotoxic activity in aqueous extract of Japanese rice bran--association with peroxidase activity. Phytotherapy research : PTR. 2004 Aug; 18(8):628-33. doi: 10.1002/ptr.1576. [PMID: 15476307]
  • P Baranczewski, J A Gustafsson, L Moller. DNA adduct formation of 14 heterocyclic aromatic amines in mouse tissue after oral administration and characterization of the DNA adduct formed by 2-amino-9H-pyrido[2,3-b]indole (AalphaC), analysed by 32P_HPLC. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals. 2004 May; 9(3):243-57. doi: 10.1080/13547500400010056. [PMID: 15764290]
  • Kazuhiko Nakahara, Molay Kumar Roy, Hiroshi Ono, Ikuko Maeda, Mayumi Ohnishi-Kameyama, Mitsuru Yoshida, Gassinee Trakoontivakorn. Prenylated flavanones isolated from flowers of Azadirachta indica (the neem tree) as antimutagenic constituents against heterocyclic amines. Journal of agricultural and food chemistry. 2003 Oct; 51(22):6456-60. doi: 10.1021/jf034666z. [PMID: 14558762]
  • Mitsuo Miyazawa, Tomoki Yamada, Hirotoshi Utsunomiya. Suppressive effect of the SOS-inducing activity of chemical mutagen by citric acid esters from Prunus mume Sieb. Et Zucc. using the Salmonella typhimurium TA1535/pSK1002 umu test. Natural product research. 2003 Oct; 17(5):319-23. doi: 10.1080/1057563031000072550. [PMID: 14526909]
  • Makoto Yoshimoto, Shoji Yahara, Shigenori Okuno, Md Shahidul Islam, Koji Ishiguro, Osamu Yamakawa. Antimutagenicity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas L.) leaf. Bioscience, biotechnology, and biochemistry. 2002 Nov; 66(11):2336-41. doi: 10.1271/bbb.66.2336. [PMID: 12506969]
  • N Hatanaka, H Yamazaki, R Kizu, K Hayakawa, Y Aoki, M Iwanari, M Nakajima, T Yokoi. Induction of cytochrome P450 1B1 in lung, liver and kidney of rats exposed to diesel exhaust. Carcinogenesis. 2001 Dec; 22(12):2033-8. doi: 10.1093/carcin/22.12.2033. [PMID: 11751436]
  • K Nakahara, M Onishi-Kameyama, H Ono, M Yoshida, G Trakoontivakorn. Antimutagenic activity against trp-P-1 of the edible Thai plant, Oroxylum indicum vent. Bioscience, biotechnology, and biochemistry. 2001 Oct; 65(10):2358-60. doi: 10.1271/bbb.65.2358. [PMID: 11758941]
  • K Egoshi, H Nakaoka, T Oka, K Abo. [Behavior of Trp-P-1 and its metabolites in rat excreta]. Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan. 2001 Aug; 42(4):220-5. doi: 10.3358/shokueishi.42.220. [PMID: 11817135]
  • G Trakoontivakorn, K Nakahara, H Shinmoto, M Takenaka, M Onishi-Kameyama, H Ono, M Yoshida, T Nagata, T Tsushida. Structural analysis of a novel antimutagenic compound, 4-Hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. Journal of agricultural and food chemistry. 2001 Jun; 49(6):3046-50. doi: 10.1021/jf010016o. [PMID: 11410007]
  • M Miyazawa, Y Okuno, K Oshiro, H Kasahara, H Shimamura, S Nakamura, H Kameoka. Suppression of the SOS-inducing activity of Trp-P-1 and aflatoxin B1 by meso-dihydroguaiaretic acid from Machilus thunbergii in the Salmonella typhimurium TA1535/pSK1002 umu test. Bioscience, biotechnology, and biochemistry. 1998 Jul; 62(7):1425-7. doi: ". [PMID: 9720227]
  • H Yoshino, K Urano. Mutagenic activities of exhaust gas and ash from sludge incineration plants. The Science of the total environment. 1998 Apr; 215(1-2):41-9. doi: 10.1016/s0048-9697(98)00120-x. [PMID: 9599455]
  • Y F Sasaki, A Saga, M Akasaka, E Nishidate, M Watanabe-Akanuma, T Ohta, N Matsusaka, S Tsuda. In vivo genotoxicity of heterocyclic amines detected by a modified alkaline single cell gel electrophoresis assay in a multiple organ study in the mouse. Mutation research. 1997 Dec; 395(1):57-73. doi: 10.1016/s1383-5718(97)00142-3. [PMID: 9465914]
  • G C Yen, P D Duh. Antimutagenic effect of methanolic extracts from peanut hulls. Bioscience, biotechnology, and biochemistry. 1996 Oct; 60(10):1698-700. doi: 10.1271/bbb.60.1698. [PMID: 8987671]
  • H Oshite, M Oda, V C Nguyen. Desmutagenicity of soybean after heating. Bioscience, biotechnology, and biochemistry. 1996 Jul; 60(7):1152-5. doi: 10.1271/bbb.60.1152. [PMID: 8782410]
  • P J Harris, C M Triggs, A M Roberton, M E Watson, L R Ferguson. The adsorption of heterocyclic aromatic amines by model dietary fibres with contrasting compositions. Chemico-biological interactions. 1996 Mar; 100(1):13-25. doi: 10.1016/0009-2797(95)03682-2. [PMID: 8599852]
  • E B Brittebo. Metabolic activation of the food mutagen Trp-P-1 in endothelial cells of heart and kidney in cytochrome P450-induced mice. Carcinogenesis. 1994 Apr; 15(4):667-72. doi: 10.1093/carcin/15.4.667. [PMID: 8149478]
  • A Umemoto, Y Monden, S Grivas, K Yamashita, T Sugimura. Determination of human exposure to the dietary carcinogen 3-amino-1, 4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) from hemoglobin adduct: the relationship to DNA adducts. Carcinogenesis. 1992 Jun; 13(6):1025-30. doi: 10.1093/carcin/13.6.1025. [PMID: 1600606]
  • M Sato, T Sato, Y Ose, H Nagase, H Kito, Y Sakai. Modulating effect of tanshinones on mutagenic activity of Trp-P-1 and benzo[a]pyrene in Salmonella typhimurium. Mutation research. 1992 Feb; 265(2):149-54. doi: 10.1016/0027-5107(92)90043-2. [PMID: 1370713]
  • S Manabe, M Suzuki, E Kusano, O Wada, Y Asano. Elevation of levels of carcinogenic tryptophan pyrolysis products in plasma and red blood cells of patients with uremia. Clinical nephrology. 1992 Jan; 37(1):28-33. doi: NULL. [PMID: 1541061]
  • H Ushiyama, K Wakabayashi, M Hirose, H Itoh, T Sugimura, M Nagao. Presence of carcinogenic heterocyclic amines in urine of healthy volunteers eating normal diet, but not of inpatients receiving parenteral alimentation. Carcinogenesis. 1991 Aug; 12(8):1417-22. doi: 10.1093/carcin/12.8.1417. [PMID: 1907222]
  • M Niikawa, Y Sakai, Y Ose, T Sato, H Nagase, H Kito, M Sato, M Mizuno. Enhancement of the mutagenicity of Trp-P-1, Trp-P-2 and benzo[a]pyrene by bupleuri radix extract. Chemical & pharmaceutical bulletin. 1990 Jul; 38(7):2035-9. doi: 10.1248/cpb.38.2035. [PMID: 2268909]
  • T Kato, T Takahashi, K Kikugawa. Inactivation of mutagenic heterocyclic and aryl amines by linoleic acid 13-monohydroperoxide and methemoglobin. Basic life sciences. 1990; 52(?):407-10. doi: 10.1007/978-1-4615-9561-8_41. [PMID: 2183778]
  • S Manabe, O Wada. Identification of carcinogenic tryptophan pyrolysis products in human bile by high-performance liquid chromatography. Environmental and molecular mutagenesis. 1990; 15(4):229-35. doi: 10.1002/em.2850150410. [PMID: 2357976]
  • S Manabe, Y Kanai, O Wada. Exposure level monitor of 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole, a dietary carcinogen, in rabbits. Environmental and molecular mutagenesis. 1989; 14(1):34-41. doi: 10.1002/em.2850140107. [PMID: 2753027]
  • S Manabe, O Wada. Analysis of human plasma as an exposure level monitor for carcinogenic tryptophan pyrolysis products. Mutation research. 1988 Sep; 209(1-2):33-8. doi: 10.1016/0165-7992(88)90107-8. [PMID: 3173401]
  • J J Rafter, J A Gustafsson. Metabolism of the dietary carcinogen TRP-P-1 in rats. Carcinogenesis. 1986 Aug; 7(8):1291-5. doi: 10.1093/carcin/7.8.1291. [PMID: 3731383]
  • M Morotomi, M Mutai. In vitro binding of potent mutagenic pyrolysates to intestinal bacteria. Journal of the National Cancer Institute. 1986 Jul; 77(1):195-201. doi: . [PMID: 3014197]
  • I Brandt, J A Gustafsson, J Rafter. Distribution of the carcinogenic tryptophan pyrolysis product Trp-P-1 in control, 9-hydroxyellipticine and beta-naphthoflavone pretreated mice. Carcinogenesis. 1983 Oct; 4(10):1291-6. doi: 10.1093/carcin/4.10.1291. [PMID: 6616757]
  • . . . . doi: . [PMID: 14586095]