f 133a (BioDeep_00001868475)
Main id: BioDeep_00000012791
代谢物信息卡片
化学式: C2H2ClF3 (117.97971179999999)
中文名称: 2-氯-1,1,1-三氟乙烷
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(C(F)(F)F)Cl
InChI: InChI=1S/C2H2ClF3/c3-1-2(4,5)6/h1H2
数据库引用编号
6 个数据库交叉引用编号
- ChEBI: CHEBI:82423
- KEGG: C19367
- PubChem: 6408
- ChEMBL: CHEMBL142556
- CAS: 75-88-7
- PubChem: 124490039
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Y Minoda, E D Kharasch. Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6).
Anesthesiology.
2001 Aug; 95(2):509-14. doi:
10.1097/00000542-200108000-00037
. [PMID: 11506127] - E D Kharasch, D C Hankins, K Fenstamaker, K Cox. Human halothane metabolism, lipid peroxidation, and cytochromes P(450)2A6 and P(450)3A4.
European journal of clinical pharmacology.
2000 Feb; 55(11-12):853-9. doi:
10.1007/s002280050707
. [PMID: 10805064] - H Yin, J P Jones, M W Anders. Metabolism of 1-fluoro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane.
Chemical research in toxicology.
1995 Mar; 8(2):262-8. doi:
10.1021/tx00044a012
. [PMID: 7766810] - M K Ellis, J L Naylor, T Green, M A Collins. Identification and quantification of fluorine-containing metabolites of 1-chloro-2,2,2-trifluoroethane (HCFC133A) in the rat by 19F-NMR spectroscopy.
Drug metabolism and disposition: the biological fate of chemicals.
1995 Jan; 23(1):102-6. doi:
NULL
. [PMID: 7720511] - Y Wang, M J Olson, M T Baker. Interaction of fluoroethane chlorofluorocarbon (CFC) substitutes with microsomal cytochrome P450. Stimulation of P450 activity and chlorodifluoroethene metabolism.
Biochemical pharmacology.
1993 Jul; 46(1):87-94. doi:
10.1016/0006-2952(93)90351-v
. [PMID: 8347140] - M A Jenner, J L Plummer, M J Cousins. Halothane reductive metabolism in an adult surgical population.
Anaesthesia and intensive care.
1990 Aug; 18(3):395-9. doi:
10.1177/0310057x9001800318
. [PMID: 2221334] - A C Smith, S M Roberts, L M Berman, R D Harbison, R C James. Effects of piperonyl butoxide on halothane hepatotoxicity and metabolism in the hyperthyroid rat.
Toxicology.
1988 Jun; 50(1):95-105. doi:
10.1016/0300-483x(88)90124-2
. [PMID: 3388433] - J L Plummer, I M Steven, M J Cousins. Metabolism of halothane in children having repeated halothane anaesthetics.
Anaesthesia and intensive care.
1987 May; 15(2):136-40. doi:
10.1177/0310057x8701500203
. [PMID: 3605562] - M T Baker, R A Van Dyke. Reductive halothane metabolite formation and halothane binding in rat hepatic microsomes.
Chemico-biological interactions.
1984 Apr; 49(1-2):121-32. doi:
10.1016/0009-2797(84)90056-5
. [PMID: 6722932] - G K Gourlay, J F Adams, M J Cousins, P Hall. Genetic differences in reductive metabolism and hepatotoxicity of halothane in three rat strains.
Anesthesiology.
1981 Aug; 55(2):96-103. doi:
10.1097/00000542-198108000-00003
. [PMID: 7258721] - G K Gourlay, J F Adams, M J Cousins, J H Sharp. Time-course of formation of volatile reductive metabolites of halothane in humans and an animal model.
British journal of anaesthesia.
1980 Mar; 52(3):331-6. doi:
NULL
. [PMID: 7370149]