PE(16:0/16:0) (BioDeep_00000018577)
human metabolite Endogenous BioNovoGene_Lab2019
代谢物信息卡片
化学式: C37H74NO8P (691.5151774)
中文名称: 1,2-二棕榈酰基-sn-丙三基-3-和磷酸乙氨醇, 1,2-二棕榈酰-SN-甘油-3-磷酰乙醇胺
谱图信息:
最多检出来源 Homo sapiens(feces) 2.33%
分子结构信息
SMILES: CCCCCCCCCCCCCCCC(=O)OCC(COP(=O)(O)OCCN)OC(=O)CCCCCCCCCCCCCCC
InChI: InChI=1S/C37H74NO8P/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-36(39)43-33-35(34-45-47(41,42)44-32-31-38)46-37(40)30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h35H,3-34,38H2,1-2H3,(H,41,42)
描述信息
PE(16:0/16:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(16:0/16:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PE(16:0/16:0), in particular, consists of two hexadecanoyl chains at positions C-1 and C-2. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors
同义名列表
25 个代谢物同义名
(2-aminoethoxy)[(2R)-2,3-bis(hexadecanoyloxy)propoxy]phosphinic acid; 2-Ammonioethyl (2R)-2,3-bis(palmitoyloxy)propyl phosphoric acid; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine zwitterion; 2-Ammonioethyl (2R)-2,3-bis(palmitoyloxy)propyl phosphate; 1,2-Dipalmitoyl-3-phosphatidylethanolamine, (+-)-isomer; 1,2-Dipalmitoyl-3-phosphatidylethanolamine, (R)-isomer; 1,2-Dihexadecanoyl-rac-glycero-3-phosphoethanolamine; 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine; 1,2-Dipalmitoyl-3-phosphatidylethanolamine, ion(1-); 1,2-Dipalmitoyl-rac-glycero-3-phosphoethanolamine; 1,2-Dihexadecyl-sn-glycero-3-phosphoethanolamine; 1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine; 1,2-Dipalmitoyl-rac-glycerophosphoethanolamine; 1,2-Dipalmitoyl-3-phosphatidylethanolamine; Phosphatidylethanolamine dipalmitoate; Dipalmitoyl phosphatidylethanolamine; Phophatidylethanolamine(16:0/16:0); Phophatidylethanolamine(32:0); Dipalmitoyl cephalin; GPEtn(16:0/16:0); PE(16:0/16:0); GPEtn(32:0); PE(32:0); DHPE; dppe
数据库引用编号
10 个数据库交叉引用编号
- ChEBI: CHEBI:73127
- PubChem: 445468
- PubChem: 65109
- HMDB: HMDB0008923
- DrugBank: DB01728
- foodb: FDB026113
- CAS: 5681-36-7
- CAS: 923-61-5
- PMhub: MS000009111
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-617
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
62 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(62)
- Phospholipid Biosynthesis:
LysoPC(16:0) ⟶ CDP-Choline
- Phospholipid Biosynthesis:
LysoPC(16:0) ⟶ CDP-Choline
- Phospholipid Biosynthesis:
LysoPC(16:0) ⟶ CDP-Choline
- Phospholipid Biosynthesis:
LysoPC(16:0) ⟶ CDP-Choline
- Phospholipid Biosynthesis:
LysoPC(16:0) ⟶ CDP-Choline
- Phospholipid Biosynthesis:
LysoPC(16:0) ⟶ CDP-Choline
- Phospholipid Biosynthesis CL(16:0/16:0/16:0/18:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/18:1(9Z)/18:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/18:1(9Z)/16:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/18:1(9Z)/16:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phosphatidylcholine Biosynthesis PC(16:0/16:0):
Hydrogen Ion + L-Serine ⟶ Carbon dioxide + Ethanolamine
- Phosphatidylethanolamine Biosynthesis PE(16:0/16:0):
Hydrogen Ion + L-Serine ⟶ Carbon dioxide + Ethanolamine
- Lysolipid incorporation into Mitochondria PC(16:0/16:0):
Adenosine triphosphate + LysoPC(16:0) + Water ⟶ Adenosine diphosphate + LysoPC(16:0) + Phosphate
- Lysolipid Incorporation into ER PC(16:0/16:0):
Adenosine triphosphate + LysoPC(16:0) + Water ⟶ Adenosine diphosphate + LysoPC(16:0) + Phosphate
- Phosphatidylcholine biosynthesis PC(16:0/16:0):
PE-NMe2(16:0/16:0) + S-Adenosylmethionine ⟶ Hydrogen Ion + PC(16:0/16:0) + S-Adenosylhomocysteine
- Phosphatidylcholine Biosynthesis PC(16:0/16:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(16:0/16:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(16:0/16:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phosphatidylcholine Biosynthesis PC(16:0/16:0):
Adenosine triphosphate + Choline ⟶ Adenosine diphosphate + Phosphorylcholine
- Phospholipid Biosynthesis CL(16:0/16:0/16:1(9Z)/16:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- phospholipid biosynthesis (CL(18:1(9Z)/16:0/17:0cycw7c/16:0)):
CDP-DG(19:1(9Z)/18:1(9Z)) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(19:iso/18:1(9Z))
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- phospholipid biosynthesis (CL(19:0/16:1(9Z)/16:0/16:0)):
PE(16:0/16:0) + PG(19:0/16:1(9Z)) ⟶ CL(19:0/16:1(9Z)/16:0/16:0) + Ethanolamine
- Glycerophospholipid Metabolism:
Adenosine triphosphate + Ethanolamine ⟶ Adenosine diphosphate + Hydrogen Ion + O-Phosphoethanolamine
- Phosphatidylethanolamine Biosynthesis PE(16:0/16:0):
L-Serine + PC(16:0/16:0) ⟶ Choline + PS(16:0/16:0)
- Phosphatidylethanolamine Biosynthesis PE(16:0/16:0):
L-Serine + PC(16:0/16:0) ⟶ Choline + PS(16:0/16:0)
- Phosphatidylethanolamine Biosynthesis PE(16:0/16:0):
L-Serine + PC(16:0/16:0) ⟶ Choline + PS(16:0/16:0)
- Phosphatidylethanolamine Biosynthesis PE(16:0/16:0):
L-Serine + PC(16:0/16:0) ⟶ Choline + PS(16:0/16:0)
- Array:
L-Serine + PC(16:0/16:0) ⟶ Choline + PS(16:0/16:0)
- Array:
L-Serine + PC(16:0/16:0) ⟶ Choline + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/14:0/14:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/14:0/16:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/14:0/17:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/14:0/18:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/14:0/19:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/16:0/17:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/16:0/19:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/16:1(9Z)/14:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/16:1(9Z)/15:0cycw5):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/16:1(9Z)/16:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/18:1(9Z)/14:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/16:1(9Z)/17:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/16:1(9Z)/18:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/16:1(9Z)/19:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/17:0cycw7/14:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/17:0cycw7/15:0cycw5):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/17:0cycw7/16:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/17:0cycw7/16:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/17:0cycw7/17:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/17:0cycw7/18:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/17:0cycw7/19:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/18:1(9Z)/15:0cycw5):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/18:1(9Z)/17:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/18:1(9Z)/19:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/19:0cycw7/14:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/19:0cycw7/15:0cycw5):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/19:0cycw7/16:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/19:0cycw7/16:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/19:0cycw7/17:0cycw7):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Phospholipid Biosynthesis CL(16:0/16:0/19:0cycw7/18:1(9Z)):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Phospholipid Biosynthesis CL(16:0/16:0/16:0/16:0):
CDP-DG(16:0/16:0) + L-Serine ⟶ Cytidine monophosphate + Hydrogen Ion + PS(16:0/16:0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Vlastimil Jirasko, Alons Lends, Nils-Alexander Lakomek, Marie-Laure Fogeron, Marco E Weber, Alexander A Malär, Susanne Penzel, Ralf Bartenschlager, Beat H Meier, Anja Böckmann. Dimer Organization of Membrane-Associated NS5A of Hepatitis C Virus as Determined by Highly Sensitive 1 H-Detected Solid-State NMR.
Angewandte Chemie (International ed. in English).
2021 03; 60(10):5339-5347. doi:
10.1002/anie.202013296
. [PMID: 33205864] - Siddabasave Gowda B Gowda, Hirotoshi Fuda, Yusuke Yamamoto, Hitoshi Chiba, Shu-Ping Hui. A Simple and Efficient Method for Synthesis of sn-Glycero-Phosphoethanolamine.
Lipids.
2020 07; 55(4):395-401. doi:
10.1002/lipd.12243
. [PMID: 32406068] - Eric C Abenojar, Pinunta Nittayacharn, Al Christopher de Leon, Reshani Perera, Yu Wang, Ilya Bederman, Agata A Exner. Effect of Bubble Concentration on the in Vitro and in Vivo Performance of Highly Stable Lipid Shell-Stabilized Micro- and Nanoscale Ultrasound Contrast Agents.
Langmuir : the ACS journal of surfaces and colloids.
2019 08; 35(31):10192-10202. doi:
10.1021/acs.langmuir.9b00462
. [PMID: 30913884] - Jorge Alfonso Arvayo-Zatarain, Fernando Favela-Rosales, Claudio Contreras-Aburto, Efrain Urrutia-Bañuelos, Amir Maldonado. Molecular dynamics simulation study of the effect of halothane on mixed DPPC/DPPE phospholipid membranes.
Journal of molecular modeling.
2018 Dec; 25(1):4. doi:
10.1007/s00894-018-3890-6
. [PMID: 30554281] - Bob-Dan Lechner, Philip Biehl, Helgard Ebert, Stefan Werner, Annette Meister, Gerd Hause, Kirsten Bacia, Carsten Tschierske, Alfred Blume. Controlling the Miscibility of X-Shaped Bolapolyphiles in Lipid Membranes by Varying the Chemical Structure and Size of the Polyphile Polar Headgroup.
The journal of physical chemistry. B.
2018 12; 122(48):10861-10871. doi:
10.1021/acs.jpcb.8b08582
. [PMID: 30407826] - Masaki Goto, Yuya Aoki, Nobutake Tamai, Hitoshi Matsuki. Effect of pressure on bilayer phase behavior of N-methylated di-O-hexadecylphosphatidylethanolamines: relevance of head-group modification on the bilayer interdigitation.
Biophysical chemistry.
2017 Dec; 231(?):64-70. doi:
10.1016/j.bpc.2017.03.009
. [PMID: 28410942] - Marcin Broniatowski, Martyna Binczycka, Aneta Wójcik, Michał Flasiński, Paweł Wydro. Polycyclic aromatic hydrocarbons in model bacterial membranes - Langmuir monolayer studies.
Biochimica et biophysica acta. Biomembranes.
2017 Dec; 1859(12):2402-2412. doi:
10.1016/j.bbamem.2017.09.017
. [PMID: 28939381] - Erdinc Sezgin, Falk Schneider, Victoria Zilles, Iztok Urbančič, Esther Garcia, Dominic Waithe, Andrey S Klymchenko, Christian Eggeling. Polarity-Sensitive Probes for Superresolution Stimulated Emission Depletion Microscopy.
Biophysical journal.
2017 Sep; 113(6):1321-1330. doi:
10.1016/j.bpj.2017.06.050
. [PMID: 28734477] - Hui Li, Janamejaya Chowdhary, Lei Huang, Xibing He, Alexander D MacKerell, Benoît Roux. Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids.
Journal of chemical theory and computation.
2017 Sep; 13(9):4535-4552. doi:
10.1021/acs.jctc.7b00262
. [PMID: 28731702] - Matthew Patterson, Hans J Vogel, Elmar J Prenner. The effect of repeated lateral compression and expansions mimicking blinking on selected tear film polar lipid monofilms.
Biochimica et biophysica acta. Biomembranes.
2017 03; 1859(3):319-330. doi:
10.1016/j.bbamem.2016.12.010
. [PMID: 27993563] - Sijia Wang, Xia Han, Danyang Liu, Mengya Li, Shouhong Xu, Honglai Liu. Melting Behavior of Zipper-Structured Lipopeptides in Lipid Bilayer.
Langmuir : the ACS journal of surfaces and colloids.
2017 02; 33(6):1478-1485. doi:
10.1021/acs.langmuir.6b04080
. [PMID: 28099806] - Oona Freudenthal, Fabienne Quilès, Grégory Francius, Kamila Wojszko, Marcelina Gorczyca, Beata Korchowiec, Ewa Rogalska. Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies.
Biochimica et biophysica acta.
2016 11; 1858(11):2592-2602. doi:
10.1016/j.bbamem.2016.07.015
. [PMID: 27480806] - Filip Savić, Torben-Tobias Kliesch, Sarah Verbeek, Chunxiao Bao, Jan Thiart, Alexander Kros, Burkhard Geil, Andreas Janshoff. Geometry of the Contact Zone between Fused Membrane-Coated Beads Mimicking Cell-Cell Fusion.
Biophysical journal.
2016 05; 110(10):2216-28. doi:
10.1016/j.bpj.2016.04.026
. [PMID: 27224487] - Zachary I Imam, Laura E Kenyon, Adelita Carrillo, Isai Espinoza, Fatema Nagib, Jeanne C Stachowiak. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.
Langmuir : the ACS journal of surfaces and colloids.
2016 Apr; 32(15):3774-84. doi:
10.1021/acs.langmuir.6b00170
. [PMID: 27043009] - Michael R Sanders, Luke A Clifton, Richard A Frazier, Rebecca J Green. Role of Lipid Composition on the Interaction between a Tryptophan-Rich Protein and Model Bacterial Membranes.
Langmuir : the ACS journal of surfaces and colloids.
2016 Mar; 32(8):2050-7. doi:
10.1021/acs.langmuir.5b04628
. [PMID: 26813886] - Chiho Kataoka-Hamai, Yoshihisa Kaizuka, Tetsushi Taguchi. Binding of Lipopolysaccharide and Cholesterol-Modified Gelatin on Supported Lipid Bilayers: Effect of Bilayer Area Confinement and Bilayer Edge Tension.
Langmuir : the ACS journal of surfaces and colloids.
2016 Feb; 32(5):1250-8. doi:
10.1021/acs.langmuir.5b04302
. [PMID: 26735125] - Kristina A Runas, Shiv J Acharya, Jacob J Schmidt, Noah Malmstadt. Addition of Cleaved Tail Fragments during Lipid Oxidation Stabilizes Membrane Permeability Behavior.
Langmuir : the ACS journal of surfaces and colloids.
2016 Jan; 32(3):779-86. doi:
10.1021/acs.langmuir.5b02980
. [PMID: 26704691] - Jong Chul Kim, Giyoong Tae. The modulation of biodistribution of stem cells by anchoring lipid-conjugated heparin on the cell surface.
Journal of controlled release : official journal of the Controlled Release Society.
2015 Nov; 217(?):128-37. doi:
10.1016/j.jconrel.2015.08.053
. [PMID: 26342662] - Karthik Uppulury, Patrick S Coppock, James T Kindt. Molecular Simulation of the DPPE Lipid Bilayer Gel Phase: Coupling between Molecular Packing Order and Tail Tilt Angle.
The journal of physical chemistry. B.
2015 Jul; 119(28):8725-33. doi:
10.1021/acs.jpcb.5b05720
. [PMID: 26109479] - J Majewski, S André, E Jones, E Chi, H-J Gabius. X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface.
Biochemistry. Biokhimiia.
2015 Jul; 80(7):943-56. doi:
10.1134/s0006297915070135
. [PMID: 26542007] - Yujia Jing, Hana Dobšíček Trefná, Mikael Persson, Sofia Svedhem. Heat-activated liposome targeting to streptavidin-coated surfaces.
Biochimica et biophysica acta.
2015 Jun; 1848(6):1417-23. doi:
10.1016/j.bbamem.2015.02.022
. [PMID: 25732026] - Justyna Kowal, Dalin Wu, Viktoria Mikhalevich, Cornelia G Palivan, Wolfgang Meier. Hybrid polymer-lipid films as platforms for directed membrane protein insertion.
Langmuir : the ACS journal of surfaces and colloids.
2015 May; 31(17):4868-77. doi:
10.1021/acs.langmuir.5b00388
. [PMID: 25849126] - Seung Won Shin, Kyung Soo Park, Min Su Jang, Woo Chul Song, Jin Kim, Seung-Woo Cho, Joo Young Lee, Jeong Ho Cho, Sunghwan Jung, Soong Ho Um. X-DNA origami-networked core-supported lipid stratum.
Langmuir : the ACS journal of surfaces and colloids.
2015 Jan; 31(3):912-6. doi:
10.1021/la503754e
. [PMID: 25585044] - Brittany N DeWitt, Robert C Dunn. Interaction of cholesterol in ternary lipid mixtures investigated using single-molecule fluorescence.
Langmuir : the ACS journal of surfaces and colloids.
2015 Jan; 31(3):995-1004. doi:
10.1021/la503797w
. [PMID: 25531175] - Meng-Tse Gabriel Lee, Hsuan-Mao Wang, Ja-An Annie Ho, Nien-Chu Fan, Ya-Lin Yang, Chien-Chang Lee, Shyr-Chyr Chen. Resuscitation Using Liposomal Vasopressin in an Animal Model of Uncontrolled Hemorrhagic Shock.
PloS one.
2015; 10(7):e0130655. doi:
10.1371/journal.pone.0130655
. [PMID: 26154286] - Ole G Mouritsen, Luis A Bagatolli. Lipid domains in model membranes: a brief historical perspective.
Essays in biochemistry.
2015; 57(?):1-19. doi:
10.1042/bse0570001
. [PMID: 25658340] - Juliana Sakamoto Yoneda, Carolina Fortes Rigos, Thaís Fernanda Aranda de Lourenço, Heitor Gobbi Sebinelli, Pietro Ciancaglini. Na,K-ATPase reconstituted in ternary liposome: the presence of cholesterol affects protein activity and thermal stability.
Archives of biochemistry and biophysics.
2014 Dec; 564(?):136-41. doi:
10.1016/j.abb.2014.09.015
. [PMID: 25286376] - Koji Ogata, Waka Uchida, Shinichiro Nakamura. Understanding thermal phases in atomic detail by all-atom molecular-dynamics simulation of a phospholipid bilayer.
The journal of physical chemistry. B.
2014 Dec; 118(49):14353-65. doi:
10.1021/jp504684h
. [PMID: 25383505] - George R Heath, Johannes Roth, Simon D Connell, Stephen D Evans. Diffusion in low-dimensional lipid membranes.
Nano letters.
2014 Oct; 14(10):5984-8. doi:
10.1021/nl503024v
. [PMID: 25166509] - Erik B Watkins, Haifei Gao, Andrew J C Dennison, Nathalie Chopin, Bernd Struth, Thomas Arnold, Jean-Claude Florent, Ludger Johannes. Carbohydrate conformation and lipid condensation in monolayers containing glycosphingolipid Gb3: influence of acyl chain structure.
Biophysical journal.
2014 Sep; 107(5):1146-1155. doi:
10.1016/j.bpj.2014.07.023
. [PMID: 25185550] - Andrea Annibal, Kristin Schubert, Ulf Wagner, Ralf Hoffmann, Jürgen Schiller, Maria Fedorova. New covalent modifications of phosphatidylethanolamine by alkanals: mass spectrometry based structural characterization and biological effects.
Journal of mass spectrometry : JMS.
2014 Jul; 49(7):557-69. doi:
10.1002/jms.3373
. [PMID: 25044840] - Daniel F Kienle, João V de Souza, Erik B Watkins, Tonya L Kuhl. Thickness and refractive index of DPPC and DPPE monolayers by multiple-beam interferometry.
Analytical and bioanalytical chemistry.
2014 Jul; 406(19):4725-33. doi:
10.1007/s00216-014-7866-9
. [PMID: 24842403] - Eduardo M Clop, Ana K Chattah, María A Perillo. Water and membrane dynamics in suspensions of lipid vesicles functionalized with poly(ethylene glycol)s.
The journal of physical chemistry. B.
2014 Jun; 118(23):6150-8. doi:
10.1021/jp410894x
. [PMID: 24810785] - Michael T L Casford, Aimin Ge, Peter J N Kett, Shen Ye, Paul B Davies. The structure of lipid bilayers adsorbed on activated carboxy-terminated monolayers investigated by sum frequency generation spectroscopy.
The journal of physical chemistry. B.
2014 Mar; 118(12):3335-45. doi:
10.1021/jp410401z
. [PMID: 24628457] - Gunther Lukat, Jens Krüger, Björn Sommer. APL@Voro: a Voronoi-based membrane analysis tool for GROMACS trajectories.
Journal of chemical information and modeling.
2013 Nov; 53(11):2908-25. doi:
10.1021/ci400172g
. [PMID: 24175728] - Marina Pinheiro, Cláudia Nunes, João M Caio, Cristina Moiteiro, Gerald Brezesinski, Salette Reis. Interactions of N'-acetyl-rifabutin and N'-butanoyl-rifabutin with lipid bilayers: a synchrotron X-ray study.
International journal of pharmaceutics.
2013 Sep; 453(2):560-8. doi:
10.1016/j.ijpharm.2013.06.018
. [PMID: 23796838] - João Mello-Vieira, Tânia Sousa, Ana Coutinho, Aleksander Fedorov, Susana D Lucas, Rui Moreira, Rui E Castro, Cecília M P Rodrigues, Manuel Prieto, Fábio Fernandes. Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations.
Biochimica et biophysica acta.
2013 Sep; 1828(9):2152-63. doi:
10.1016/j.bbamem.2013.05.021
. [PMID: 23747364] - Elisa Dalla Pozza, Carlotta Lerda, Chiara Costanzo, Massimo Donadelli, Ilaria Dando, Elisa Zoratti, Maria Teresa Scupoli, Stefania Beghelli, Aldo Scarpa, Elias Fattal, Silvia Arpicco, Marta Palmieri. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity.
Biochimica et biophysica acta.
2013 May; 1828(5):1396-404. doi:
10.1016/j.bbamem.2013.01.020
. [PMID: 23384419] - Mariko Ishii, Naoya Kojima. Effective stimulation of invariant natural killer T cells by oligomannose-coated liposomes.
International immunopharmacology.
2013 Apr; 15(4):685-92. doi:
10.1016/j.intimp.2013.03.009
. [PMID: 23535021] - Per Niklas Hedde, René M Dörlich, Rosmarie Blomley, Dietmar Gradl, Emmanuel Oppong, Andrew C B Cato, G Ulrich Nienhaus. Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells.
Nature communications.
2013; 4(?):2093. doi:
10.1038/ncomms3093
. [PMID: 23803641] - Carme Suárez-Germà, Luís M S Loura, Oscar Domènech, M Teresa Montero, José Luís Vázquez-Ibar, Jordi Hernández-Borrell. Phosphatidylethanolamine-lactose permease interaction: a comparative study based on FRET.
The journal of physical chemistry. B.
2012 Dec; 116(48):14023-8. doi:
10.1021/jp309726v
. [PMID: 23137163] - Luiz C Salay, Marystela Ferreira, Osvaldo N Oliveira, Clovis R Nakaie, Shirley Schreier. Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers.
Colloids and surfaces. B, Biointerfaces.
2012 Dec; 100(?):95-102. doi:
10.1016/j.colsurfb.2012.05.002
. [PMID: 22772075] - Diganta Sarma, Heather Hajovsky, Yakov M Koen, Nadezhda A Galeva, Todd D Williams, Jeffrey L Staudinger, Robert P Hanzlik. Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites.
Chemical research in toxicology.
2012 Sep; 25(9):1868-77. doi:
10.1021/tx3001658
. [PMID: 22667464] - Md Aminur Rahman, Anitha Kothalam, Eun Sang Choe, Mi-Sook Won, Yoon-Bo Shim. Stability and sensitivity enhanced electrochemical in vivo superoxide microbiosensor based on covalently co-immobilized lipid and cytochrome c.
Analytical chemistry.
2012 Aug; 84(15):6654-60. doi:
10.1021/ac301086m
. [PMID: 22804745] - Paweł Wydro, Michał Flasiński, Marcin Broniatowski. Molecular organization of bacterial membrane lipids in mixed systems--A comprehensive monolayer study combined with Grazing Incidence X-ray Diffraction and Brewster Angle Microscopy experiments.
Biochimica et biophysica acta.
2012 Jul; 1818(7):1745-54. doi:
10.1016/j.bbamem.2012.03.010
. [PMID: 22465064] - Janos Juhasz, James H Davis, Frances J Sharom. Fluorescent probe partitioning in GUVs of binary phospholipid mixtures: implications for interpreting phase behavior.
Biochimica et biophysica acta.
2012 Jan; 1818(1):19-26. doi:
10.1016/j.bbamem.2011.09.006
. [PMID: 21945563] - Roberto P Stock, Jonathan Brewer, Kerstin Wagner, Blanca Ramos-Cerrillo, Lars Duelund, Kit Drescher Jernshøj, Lars Folke Olsen, Luis A Bagatolli. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.
PloS one.
2012; 7(4):e36003. doi:
10.1371/journal.pone.0036003
. [PMID: 22558302] - Nuria Izquierdo-Useros, Maier Lorizate, F-Xabier Contreras, Maria T Rodriguez-Plata, Bärbel Glass, Itziar Erkizia, Julia G Prado, Josefina Casas, Gemma Fabriàs, Hans-Georg Kräusslich, Javier Martinez-Picado. Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1.
PLoS biology.
2012; 10(4):e1001315. doi:
10.1371/journal.pbio.1001315
. [PMID: 22545022] - Carme Suárez-Germà, M Teresa Montero, Jordi Ignés-Mullol, Jordi Hernández-Borrell, Oscar Domènech. Acyl chain differences in phosphatidylethanolamine determine domain formation and LacY distribution in biomimetic model membranes.
The journal of physical chemistry. B.
2011 Nov; 115(44):12778-84. doi:
10.1021/jp206369k
. [PMID: 21962215] - Ling Chao, Susan Daniel. Measuring the partitioning kinetics of membrane biomolecules using patterned two-phase coexistant lipid bilayers.
Journal of the American Chemical Society.
2011 Oct; 133(39):15635-43. doi:
10.1021/ja205274g
. [PMID: 21848257] - Curt M DeCaro, Justin D Berry, Laurence B Lurio, Yicong Ma, Gang Chen, Sunil Sinha, Lobat Tayebi, Atul N Parikh, Zhang Jiang, Alec R Sandy. Substrate suppression of thermal roughness in stacked supported bilayers.
Physical review. E, Statistical, nonlinear, and soft matter physics.
2011 Oct; 84(4 Pt 1):041914. doi:
10.1103/physreve.84.041914
. [PMID: 22181182] - Michael S Jablin, Manish Dubey, Mikhail Zhernenkov, Ryan Toomey, Jarosław Majewski. Influence of lipid membrane rigidity on properties of supporting polymer.
Biophysical journal.
2011 Jul; 101(1):128-33. doi:
10.1016/j.bpj.2011.05.054
. [PMID: 21723822] - Nicholas B Last, Elizabeth Rhoades, Andrew D Miranker. Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity.
Proceedings of the National Academy of Sciences of the United States of America.
2011 Jun; 108(23):9460-5. doi:
10.1073/pnas.1102356108
. [PMID: 21606325] - P J N Kett, M T L Casford, P B Davies. Structure of mixed phosphatidylethanolamine and cholesterol monolayers in a supported hybrid bilayer membrane studied by sum frequency generation vibrational spectroscopy.
The journal of physical chemistry. B.
2011 May; 115(20):6465-73. doi:
10.1021/jp1112685
. [PMID: 21542565] - Jai Woong Seo, Shengping Qin, Lisa M Mahakian, Katherine D Watson, Azadeh Kheirolomoom, Katherine W Ferrara. Positron emission tomography imaging of the stability of Cu-64 labeled dipalmitoyl and distearoyl lipids in liposomes.
Journal of controlled release : official journal of the Controlled Release Society.
2011 Apr; 151(1):28-34. doi:
10.1016/j.jconrel.2011.01.008
. [PMID: 21241753] - Christopher F Monson, Hudson P Pace, Chunming Liu, Paul S Cremer. Supported bilayer electrophoresis under controlled buffer conditions.
Analytical chemistry.
2011 Mar; 83(6):2090-6. doi:
10.1021/ac1028819
. [PMID: 21319743] - Sophie Aimon, John Manzi, Daniel Schmidt, Jose Antonio Poveda Larrosa, Patricia Bassereau, Gilman E S Toombes. Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles.
PloS one.
2011; 6(10):e25529. doi:
10.1371/journal.pone.0025529
. [PMID: 21998666] - Hailong Zhang, Yong Ma, Xue-Long Sun. Chemically selective liposome surface glyco-functionalization.
Methods in molecular biology (Clifton, N.J.).
2011; 751(?):269-80. doi:
10.1007/978-1-61779-151-2_16
. [PMID: 21674336] - Sathiah Thennarasu, Rui Huang, Dong-Kuk Lee, Pei Yang, Lee Maloy, Zhan Chen, Ayyalusamy Ramamoorthy. Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367.
Biochemistry.
2010 Dec; 49(50):10595-605. doi:
10.1021/bi101394r
. [PMID: 21062093] - Dina Mirjanian, Allison N Dickey, Jan H Hoh, Thomas B Woolf, Mark J Stevens. Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion.
The journal of physical chemistry. B.
2010 Sep; 114(34):11061-8. doi:
10.1021/jp1055182
. [PMID: 20701307] - Kathryn B Smith-Dupont, Lin Guo, Feng Gai. Diffusion as a probe of the heterogeneity of antimicrobial peptide-membrane interactions.
Biochemistry.
2010 Jun; 49(22):4672-8. doi:
10.1021/bi100426p
. [PMID: 20455545] - Agnes Oszlánczi, Attila Bóta, Szilvia Berényi, Erwin Klumpp. Structural and morphological changes in bacteria-membrane mimetic DPPE/DPPG/water systems induced by sulfadiazine.
Colloids and surfaces. B, Biointerfaces.
2010 Apr; 76(2):519-28. doi:
10.1016/j.colsurfb.2009.12.013
. [PMID: 20074918] - Katarzyna Czapla, Beata Korchowiec, Ewa Rogalska. Differentiating oxicam nonsteroidal anti-inflammatory drugs in phosphoglyceride monolayers.
Langmuir : the ACS journal of surfaces and colloids.
2010 Mar; 26(5):3485-92. doi:
10.1021/la903052t
. [PMID: 20030324] - Agnes Oszlánczi, Attila Bóta, Erwin Klumpp. Influence of aminoglycoside antibiotics on the thermal behaviour and structural features of DPPE-DPPG model membranes.
Colloids and surfaces. B, Biointerfaces.
2010 Jan; 75(1):141-8. doi:
10.1016/j.colsurfb.2009.08.027
. [PMID: 19748239] - Stefaan J H Soenen, Eszter Illyes, Dries Vercauteren, Kevin Braeckmans, Zsuzsa Majer, Stefaan C De Smedt, Marcel De Cuyper. The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes.
Biomaterials.
2009 Dec; 30(36):6803-13. doi:
10.1016/j.biomaterials.2009.08.050
. [PMID: 19765821] - Hiroyuki Inoshita, Misao Matsushita, Shunichi Koide, Gaku Kusaba, Masaya Ishii, Kisara Onda, Min Jin Gi, Munehiro Nakata, Isao Ohsawa, Satoshi Horikoshi, Hiroyuki Ohi, Yasuhiko Tomino. A novel measurement method for activation of the lectin complement pathway via both mannose-binding lectin (MBL) and L-ficolin.
Journal of immunological methods.
2009 Sep; 349(1-2):9-17. doi:
10.1016/j.jim.2009.08.005
. [PMID: 19699205] - Laila Dafik, Venkateshwarlu Kalsani, Anthony Kar Lun Leung, Krishna Kumar. Fluorinated lipid constructs permit facile passage of molecular cargo into living cells.
Journal of the American Chemical Society.
2009 Sep; 131(34):12091-3. doi:
10.1021/ja902777d
. [PMID: 19673473] - Mohammad Ramezani, Majid Khoshhamdam, Ali Dehshahri, Bizhan Malaekeh-Nikouei. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes.
Colloids and surfaces. B, Biointerfaces.
2009 Aug; 72(1):1-5. doi:
10.1016/j.colsurfb.2009.03.018
. [PMID: 19395245] - Yong Ran, Gail E Fanucci. Ligand extraction properties of the GM2 activator protein and its interactions with lipid vesicles.
Biophysical journal.
2009 Jul; 97(1):257-66. doi:
10.1016/j.bpj.2009.03.065
. [PMID: 19580763] - Corina Ciobanasu, Enno Harms, Gisela Tünnemann, M Cristina Cardoso, Ulrich Kubitscheck. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers.
Biochemistry.
2009 Jun; 48(22):4728-37. doi:
10.1021/bi900365s
. [PMID: 19400584] - Hillary L Smith, Michael S Jablin, Ajay Vidyasagar, Jessica Saiz, Erik Watkins, Ryan Toomey, Alan J Hurd, Jaroslaw Majewski. Model lipid membranes on a tunable polymer cushion.
Physical review letters.
2009 Jun; 102(22):228102. doi:
10.1103/physrevlett.102.228102
. [PMID: 19658904] - Thorsten Jaskolla, Beate Fuchs, Michael Karas, Jürgen Schiller. The new matrix 4-chloro-alpha-cyanocinnamic acid allows the detection of phosphatidylethanolamine chloramines by MALDI-TOF mass spectrometry.
Journal of the American Society for Mass Spectrometry.
2009 May; 20(5):867-74. doi:
10.1016/j.jasms.2008.12.028
. [PMID: 19201617] - Hideyuki Mitomo, Wen-Hua Chen, Steven L Regen. Reduced sterol-phospholipid recognition in curved fluid bilayers.
Langmuir : the ACS journal of surfaces and colloids.
2009 Apr; 25(8):4328-30. doi:
10.1021/la900346p
. [PMID: 19301879] - Inbar Elron-Gross, Yifat Glucksam, Inbal E Biton, Rimona Margalit. A novel Diclofenac-carrier for local treatment of osteoarthritis applying live-animal MRI.
Journal of controlled release : official journal of the Controlled Release Society.
2009 Apr; 135(1):65-70. doi:
10.1016/j.jconrel.2008.12.005
. [PMID: 19146892] - G Sivakumar Swamy, Sivakumar G Swamy, K Ramanarayan, Laxmi S Inamdar, Sanjeev R Inamdar. Triacontanol and jasmonic acid differentially modulate the lipid organization as evidenced by the fluorescent probe behavior and 31P nuclear magnetic resonance shifts in model membranes.
The Journal of membrane biology.
2009 Apr; 228(3):165-77. doi:
10.1007/s00232-009-9169-1
. [PMID: 19418089] - Katarzyna Wiecław, Beata Korchowiec, Yohann Corvis, Jacek Korchowiec, Hassan Guermouche, Ewa Rogalska. Meloxicam and meloxicam-beta-cyclodextrin complex in model membranes: effects on the properties and enzymatic lipolysis of phospholipid monolayers in relation to anti-inflammatory activity.
Langmuir : the ACS journal of surfaces and colloids.
2009 Feb; 25(3):1417-26. doi:
10.1021/la8033897
. [PMID: 19123793] - Michal Grzybek, Jakub Kubiak, Agnieszka Łach, Magdalena Przybyło, Aleksander F Sikorski. A raft-associated species of phosphatidylethanolamine interacts with cholesterol comparably to sphingomyelin. A Langmuir-Blodgett monolayer study.
PloS one.
2009; 4(3):e5053. doi:
10.1371/journal.pone.0005053
. [PMID: 19330037] - Roy Ziblat, Kristian Kjaer, Leslie Leiserowitz, Lia Addadi. Structure of cholesterol/lipid ordered domains in monolayers and single hydrated bilayers.
Angewandte Chemie (International ed. in English).
2009; 48(47):8958-61. doi:
10.1002/anie.200903847
. [PMID: 19842148] - Yong Ran, Gail E Fanucci. A dansyl fluorescence-based assay for monitoring kinetics of lipid extraction and transfer.
Analytical biochemistry.
2008 Nov; 382(2):132-4. doi:
10.1016/j.ab.2008.07.022
. [PMID: 18694718] - Michael J Murcia, Daniel E Minner, Gina-Mirela Mustata, Kenneth Ritchie, Christoph A Naumann. Design of quantum dot-conjugated lipids for long-term, high-speed tracking experiments on cell surfaces.
Journal of the American Chemical Society.
2008 Nov; 130(45):15054-62. doi:
10.1021/ja803325b
. [PMID: 18937457] - Beata Korchowiec, Yohann Corvis, Tapani Viitala, Cyril Feidt, Yann Guiavarch, Catherine Corbier, Ewa Rogalska. Interfacial approach to polyaromatic hydrocarbon toxicity: phosphoglyceride and cholesterol monolayer response to phenantrene, anthracene, pyrene, chrysene, and benzo[a]pyrene.
The journal of physical chemistry. B.
2008 Oct; 112(43):13518-31. doi:
10.1021/jp804080h
. [PMID: 18834169] - Matthew J Baker, Leiliang Zheng, Nicholas Winograd, Nicholas P Lockyer, John C Vickerman. Mass spectral imaging of glycophospholipids, cholesterol, and glycophorin a in model cell membranes.
Langmuir : the ACS journal of surfaces and colloids.
2008 Oct; 24(20):11803-10. doi:
10.1021/la802582f
. [PMID: 18788765] - C E Miller, D D Busath, B Strongin, J Majewski. Integration of ganglioside GT1b receptor into DPPE and DPPC phospholipid monolayers: an X-ray reflectivity and grazing-incidence diffraction study.
Biophysical journal.
2008 Oct; 95(7):3278-86. doi:
10.1529/biophysj.107.128538
. [PMID: 18599631] - P F Kador, M Wyman. Asteroid hyalosis: pathogenesis and prospects for prevention.
Eye (London, England).
2008 Oct; 22(10):1278-85. doi:
10.1038/eye.2008.35
. [PMID: 18344964] - Cecília Leal, Sibylla Rögnvaldsson, Sigrid Fossheim, Esben A Nilssen, Daniel Topgaard. Dynamic and structural aspects of PEGylated liposomes monitored by NMR.
Journal of colloid and interface science.
2008 Sep; 325(2):485-93. doi:
10.1016/j.jcis.2008.05.051
. [PMID: 18589432] - Laura Picas, M Teresa Montero, Antoni Morros, Gerard Oncins, Jordi Hernández-Borrell. Phase changes in supported planar bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine.
The journal of physical chemistry. B.
2008 Aug; 112(33):10181-7. doi:
10.1021/jp8037522
. [PMID: 18651767] - Manuela Pantusa, Luigi Sportelli, Rosa Bartucci. Spectroscopic and calorimetric studies on the interaction of human serum albumin with DPPC/PEG:2000-DPPE membranes.
European biophysics journal : EBJ.
2008 Jul; 37(6):961-73. doi:
10.1007/s00249-008-0314-z
. [PMID: 18389231] - S Lupi, A Perla, P Maselli, F Bordi, S Sennato. Infrared spectra of phosphatidylethanolamine-cardiolipin binary system.
Colloids and surfaces. B, Biointerfaces.
2008 Jun; 64(1):56-64. doi:
10.1016/j.colsurfb.2008.01.007
. [PMID: 18304785] - C E Miller, J Majewski, E B Watkins, D J Mulder, T Gog, T L Kuhl. Probing the local order of single phospholipid membranes using grazing incidence x-ray diffraction.
Physical review letters.
2008 Feb; 100(5):058103. doi:
10.1103/physrevlett.100.058103
. [PMID: 18352436] - Hérica de Lima Santos, Carolina Fortes Rigos, Antonio Cláudio Tedesco, Pietro Ciancaglini. Biostimulation of Na,K-ATPase by low-energy laser irradiation (685 nm, 35 mW): comparative effects in membrane, solubilized and DPPC:DPPE-liposome reconstituted enzyme.
Journal of photochemistry and photobiology. B, Biology.
2007 Nov; 89(1):22-8. doi:
10.1016/j.jphotobiol.2007.07.007
. [PMID: 17804250] - S J Little, M A Lynch, M Manku, A Nicolaou. Docosahexaenoic acid-induced changes in phospholipids in cortex of young and aged rats: a lipidomic analysis.
Prostaglandins, leukotrienes, and essential fatty acids.
2007 Oct; 77(3-4):155-62. doi:
10.1016/j.plefa.2007.08.009
. [PMID: 17928211] - Frank Bringezu, Monika Majerowicz, Elena Maltseva, Shaoying Wen, Gerald Brezesinski, Alan J Waring. Penetration of the antimicrobial peptide dicynthaurin into phospholipid monolayers at the liquid-air interface.
Chembiochem : a European journal of chemical biology.
2007 Jun; 8(9):1038-47. doi:
10.1002/cbic.200600503
. [PMID: 17492697] - Brian Y Wong, Roland Faller. Phase behavior and dynamic heterogeneities in lipids: a coarse-grained simulation study of DPPC-DPPE mixtures.
Biochimica et biophysica acta.
2007 Mar; 1768(3):620-7. doi:
10.1016/j.bbamem.2006.12.009
. [PMID: 17239815] - Sukit Leekumjorn, Amadeu K Sum. Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers.
Biochimica et biophysica acta.
2007 Feb; 1768(2):354-65. doi:
10.1016/j.bbamem.2006.11.003
. [PMID: 17173856] - Agnes Oszlánczi, Attila Bóta, Erwin Klumpp. Layer formations in the bacteria membrane mimetic DPPE-DPPG/water system induced by sulfadiazine.
Biophysical chemistry.
2007 Feb; 125(2-3):334-40. doi:
10.1016/j.bpc.2006.09.008
. [PMID: 17046146] - Beata Korchowiec, Maria Paluch, Yohann Corvis, Ewa Rogalska. A Langmuir film approach to elucidating interactions in lipid membranes: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/cholesterol/metal cation systems.
Chemistry and physics of lipids.
2006 Nov; 144(2):127-36. doi:
10.1016/j.chemphyslip.2006.08.005
. [PMID: 17027949] - Artem G Ayuyan, Fredric S Cohen. Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation.
Biophysical journal.
2006 Sep; 91(6):2172-83. doi:
10.1529/biophysj.106.087387
. [PMID: 16815906] - Kyung Ah Koo, Seung Hyun Kim, Tae Hwan Oh, Young Choong Kim. Acteoside and its aglycones protect primary cultures of rat cortical cells from glutamate-induced excitotoxicity.
Life sciences.
2006 Jul; 79(7):709-16. doi:
10.1016/j.lfs.2006.02.019
. [PMID: 16566948] - Takehiko Ichikawa, Takaaki Aoki, Yuko Takeuchi, Toshio Yanagida, Toru Ide. Immobilizing single lipid and channel molecules in artificial lipid bilayers with annexin A5.
Langmuir : the ACS journal of surfaces and colloids.
2006 Jul; 22(14):6302-7. doi:
10.1021/la0535025
. [PMID: 16800690]