Nafamostat (BioDeep_00000181531)

   

human metabolite blood metabolite


代谢物信息卡片


6-Carbamimidoylnaphthalen-2-yl 4-carbamimidamidobenzoic acid

化学式: C19H17N5O2 (347.1382182)
中文名称: 萘莫司他
谱图信息: 最多检出来源 Homo sapiens(blood) 96.77%

分子结构信息

SMILES: C1=CC(=CC=C1C(=O)OC2=CC3=C(C=C2)C=C(C=C3)C(=N)N)N=C(N)N
InChI: InChI=1S/C19H17N5O2/c20-17(21)14-2-1-13-10-16(8-5-12(13)9-14)26-18(25)11-3-6-15(7-4-11)24-19(22)23/h1-10H,(H3,20,21)(H4,22,23,24)

描述信息

D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D051056 - Complement Inactivating Agents
COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
D006401 - Hematologic Agents > D000925 - Anticoagulants
C471 - Enzyme Inhibitor > C783 - Protease Inhibitor
D000893 - Anti-Inflammatory Agents
D018501 - Antirheumatic Agents
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

10 个代谢物同义名

6-Carbamimidoylnaphthalen-2-yl 4-carbamimidamidobenzoic acid; 6-carbamimidoylnaphthalen-2-yl 4-carbamimidamidobenzoate; 6-amidino-2-Naphthyl 4-guanidinobenzoate; Nafamostat dihydrochloride; Nafamostat mesylate; Nafamostat mesilate; Nafamstat mesilate; Nafamostat; FUT 175; FUT-175



数据库引用编号

7 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Thomas Boehm, Marion Alix, Karin Petroczi, Serhii Vakal, Elisabeth Gludovacz, Nicole Borth, Tiina A Salminen, Bernd Jilma. Nafamostat is a Potent Human Diamine Oxidase Inhibitor Possibly Augmenting Hypersensitivity Reactions during Nafamostat Administration. The Journal of pharmacology and experimental therapeutics. 2022 08; 382(2):113-122. doi: 10.1124/jpet.122.001248. [PMID: 35688477]
  • Hyeon Seok Oh, Taehyung Kim, Dong-Hyeon Gu, Tae Suk Lee, Tae Hwan Kim, Soyoung Shin, Beom Soo Shin. Pharmacokinetics of Nafamostat, a Potent Serine Protease Inhibitor, by a Novel LC-MS/MS Analysis. Molecules (Basel, Switzerland). 2022 Mar; 27(6):. doi: 10.3390/molecules27061881. [PMID: 35335247]
  • Kazuhiro J Fujimoto, Daniel C F Hobbs, Miki Umeda, Akihiro Nagata, Rie Yamaguchi, Yoshitaka Sato, Ayato Sato, Kohsuke Ohmatsu, Takashi Ooi, Takeshi Yanai, Hiroshi Kimura, Takayuki Murata. In Silico Analysis and Synthesis of Nafamostat Derivatives and Evaluation of Their Anti-SARS-CoV-2 Activity. Viruses. 2022 02; 14(2):. doi: 10.3390/v14020389. [PMID: 35215982]
  • Susanne Krasemann, Undine Haferkamp, Susanne Pfefferle, Marcel S Woo, Fabian Heinrich, Michaela Schweizer, Antje Appelt-Menzel, Alevtina Cubukova, Janica Barenberg, Jennifer Leu, Kristin Hartmann, Edda Thies, Jessica Lisa Littau, Diego Sepulveda-Falla, Liang Zhang, Kathy Ton, Yan Liang, Jakob Matschke, Franz Ricklefs, Thomas Sauvigny, Jan Sperhake, Antonia Fitzek, Anna Gerhartl, Andreas Brachner, Nina Geiger, Eva-Maria König, Jochen Bodem, Sören Franzenburg, Andre Franke, Stefan Moese, Franz-Josef Müller, Gerd Geisslinger, Carsten Claussen, Aimo Kannt, Andrea Zaliani, Philip Gribbon, Benjamin Ondruschka, Winfried Neuhaus, Manuel A Friese, Markus Glatzel, Ole Pless. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem cell reports. 2022 02; 17(2):307-320. doi: 10.1016/j.stemcr.2021.12.011. [PMID: 35063125]
  • Tom M Quinn, Erin E Gaughan, Annya Bruce, Jean Antonelli, Richard O'Connor, Feng Li, Sarah McNamara, Oliver Koch, Claire MacKintosh, David Dockrell, Timothy Walsh, Kevin G Blyth, Colin Church, Jürgen Schwarze, Cecilia Boz, Asta Valanciute, Matthew Burgess, Philip Emanuel, Bethany Mills, Giulia Rinaldi, Gareth Hardisty, Ross Mills, Emily Gwyer Findlay, Sunny Jabbal, Andrew Duncan, Sinéad Plant, Adam D L Marshall, Irene Young, Kay Russell, Emma Scholefield, Alastair F Nimmo, Islom B Nazarov, Grant C Churchill, James S O McCullagh, Kourosh H Ebrahimi, Colin Ferrett, Kate Templeton, Steve Rannard, Andrew Owen, Anne Moore, Keith Finlayson, Manu Shankar-Hari, John Norrie, Richard A Parker, Ahsan R Akram, Daniel C Anthony, James W Dear, Nik Hirani, Kevin Dhaliwal. Randomised controlled trial of intravenous nafamostat mesylate in COVID pneumonitis: Phase 1b/2a experimental study to investigate safety, Pharmacokinetics and Pharmacodynamics. EBioMedicine. 2022 Feb; 76(?):103856. doi: 10.1016/j.ebiom.2022.103856. [PMID: 35152152]
  • Abi G Yates, Caroline M Weglinski, Yuxin Ying, Isobel K Dunstan, Tatyana Strekalova, Daniel C Anthony. Nafamostat reduces systemic inflammation in TLR7-mediated virus-like illness. Journal of neuroinflammation. 2022 Jan; 19(1):8. doi: 10.1186/s12974-021-02357-y. [PMID: 34991643]
  • Masayoshi Kondo, Makihiko Nagano, Mariko Yoshida, Naoki Yoshida, Naoya Tagui, Masato Yoshida, Kazutoshi Sugaya, Hisamitsu Takase. Physical Compatibility of Nafamostat with Analgesics, Sedatives, and Muscle Relaxants for Treatment of Coronavirus Disease 2019. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi. 2021 Dec; 88(6):533-539. doi: 10.1272/jnms.jnms.2022_89-104. [PMID: 33692301]
  • Kyunglan Moon, Kyung-Wook Hong, In-Gyu Bae. Treatment effect of nafamostat mesylate in patients with COVID-19 pneumonia: study protocol for a randomized controlled trial. Trials. 2021 Nov; 22(1):832. doi: 10.1186/s13063-021-05760-1. [PMID: 34814935]
  • Matthew Mahoney, Vishnu C Damalanka, Michael A Tartell, Dong Hee Chung, André Luiz Lourenço, Dustin Pwee, Anne E Mayer Bridwell, Markus Hoffmann, Jorine Voss, Partha Karmakar, Nurit P Azouz, Andrea M Klingler, Paul W Rothlauf, Cassandra E Thompson, Melody Lee, Lidija Klampfer, Christina L Stallings, Marc E Rothenberg, Stefan Pöhlmann, Sean P J Whelan, Anthony J O'Donoghue, Charles S Craik, James W Janetka. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proceedings of the National Academy of Sciences of the United States of America. 2021 10; 118(43):. doi: 10.1073/pnas.2108728118. [PMID: 34635581]
  • Alex J B Kreutzberger, Anwesha Sanyal, Ravi Ojha, Jesse D Pyle, Olli Vapalahti, Giuseppe Balistreri, Tom Kirchhausen. Synergistic Block of SARS-CoV-2 Infection by Combined Drug Inhibition of the Host Entry Factors PIKfyve Kinase and TMPRSS2 Protease. Journal of virology. 2021 10; 95(21):e0097521. doi: 10.1128/jvi.00975-21. [PMID: 34406858]
  • Ko Sato, Hideki Hayashi, Yoshitaka Shimotai, Mutsuo Yamaya, Seiji Hongo, Kazuyoshi Kawakami, Yoko Matsuzaki, Hidekazu Nishimura. TMPRSS2 Activates Hemagglutinin-Esterase Glycoprotein of Influenza C Virus. Journal of virology. 2021 10; 95(21):e0129621. doi: 10.1128/jvi.01296-21. [PMID: 34406864]
  • Hong-Long Ji, Brant M Wagener, Timothy J Ness, Runzhen Zhao. Fibrinolytic or anti-plasmin (nafamostat) therapy for COVID-19: A timing challenge for clinicians. Pulmonary pharmacology & therapeutics. 2021 10; 70(?):102055. doi: 10.1016/j.pupt.2021.102055. [PMID: 34271164]
  • Aleksandr Ianevski, Rouan Yao, Hilde Lysvand, Gunnveig Grødeland, Nicolas Legrand, Valentyn Oksenych, Eva Zusinaite, Tanel Tenson, Magnar Bjørås, Denis E Kainov. Nafamostat-Interferon-α Combination Suppresses SARS-CoV-2 Infection In Vitro and In Vivo by Cooperatively Targeting Host TMPRSS2. Viruses. 2021 09; 13(9):. doi: 10.3390/v13091768. [PMID: 34578348]
  • Kun Li, David K Meyerholz, Jennifer A Bartlett, Paul B McCray. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. mBio. 2021 08; 12(4):e0097021. doi: 10.1128/mbio.00970-21. [PMID: 34340553]
  • Xiaoqiang Huang, Robin Pearce, Gilbert S Omenn, Yang Zhang. Identification of 13 Guanidinobenzoyl- or Aminidinobenzoyl-Containing Drugs to Potentially Inhibit TMPRSS2 for COVID-19 Treatment. International journal of molecular sciences. 2021 Jun; 22(13):. doi: 10.3390/ijms22137060. [PMID: 34209110]
  • Jungang Chen, Lu Dai, Lindsey Barrett, Jennifer James, Karlie Plaisance-Bonstaff, Steven R Post, Zhiqiang Qin. SARS-CoV-2 proteins and anti-COVID-19 drugs induce lytic reactivation of an oncogenic virus. Communications biology. 2021 06; 4(1):682. doi: 10.1038/s42003-021-02220-z. [PMID: 34083759]
  • Jaganathan Ramakrishnan, Saravanan Kandasamy, Ancy Iruthayaraj, Sivanandam Magudeeswaran, Kalaiarasi Chinnasamy, Kumaradhas Poomani. Strong Binding of Leupeptin with TMPRSS2 Protease May Be an Alternative to Camostat and Nafamostat for SARS-CoV-2 Repurposed Drug: Evaluation from Molecular Docking and Molecular Dynamics Simulations. Applied biochemistry and biotechnology. 2021 Jun; 193(6):1909-1923. doi: 10.1007/s12010-020-03475-8. [PMID: 33512650]
  • Akiko Yuno, Yoshiyuki Kenmotsu, Yuka Takahashi, Hiroshi Nomoto, Hiraku Kameda, Kyu Yong Cho, Akinobu Nakamura, Yu Yamashita, Junichi Nakamura, Sho Nakakubo, Keisuke Kamada, Masaru Suzuki, Hirokazu Sugino, Naoko Inoshita, Satoshi Konno, Hideaki Miyoshi, Tatsuya Atsumi, Yutaka Sawamura, Akira Shimatsu. Successful management of a patient with active Cushing's disease complicated with coronavirus disease 2019 (COVID-19) pneumonia. Endocrine journal. 2021 Apr; 68(4):477-484. doi: 10.1507/endocrj.ej20-0613. [PMID: 33361650]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Itsuki Osawa, Koh Okamoto, Mahoko Ikeda, Amato Otani, Yuji Wakimoto, Marie Yamashita, Takayuki Shinohara, Yoshiaki Kanno, Daisuke Jubishi, Makoto Kurano, Sohei Harada, Shu Okugawa, Yutaka Yatomi, Kyoji Moriya. Dynamic changes in fibrinogen and D-dimer levels in COVID-19 patients on nafamostat mesylate. Journal of thrombosis and thrombolysis. 2021 Apr; 51(3):649-656. doi: 10.1007/s11239-020-02275-5. [PMID: 32920751]
  • Taeheum Cho, Hyo-Sang Han, Junhyuk Jeong, Eun-Mi Park, Kyu-Sik Shim. A Novel Computational Approach for the Discovery of Drug Delivery System Candidates for COVID-19. International journal of molecular sciences. 2021 Mar; 22(6):. doi: 10.3390/ijms22062815. [PMID: 33802169]
  • Markus Hoffmann, Heike Hofmann-Winkler, Joan C Smith, Nadine Krüger, Prerna Arora, Lambert K Sørensen, Ole S Søgaard, Jørgen Bo Hasselstrøm, Michael Winkler, Tim Hempel, Lluís Raich, Simon Olsson, Olga Danov, Danny Jonigk, Takashi Yamazoe, Katsura Yamatsuta, Hirotaka Mizuno, Stephan Ludwig, Frank Noé, Mads Kjolby, Armin Braun, Jason M Sheltzer, Stefan Pöhlmann. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 2021 Mar; 65(?):103255. doi: 10.1016/j.ebiom.2021.103255. [PMID: 33676899]
  • Meehyun Ko, Sangeun Jeon, Wang-Shick Ryu, Seungtaek Kim. Comparative analysis of antiviral efficacy of FDA-approved drugs against SARS-CoV-2 in human lung cells. Journal of medical virology. 2021 03; 93(3):1403-1408. doi: 10.1002/jmv.26397. [PMID: 32767684]
  • Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Oliver Keminer, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek. A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection. Scientific data. 2021 02; 8(1):70. doi: 10.1038/s41597-021-00848-4. [PMID: 33637768]
  • Alexander Simonis, Sebastian J Theobald, Gerd Fätkenheuer, Jan Rybniker, Jakob J Malin. A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2. EMBO molecular medicine. 2021 01; 13(1):e13105. doi: 10.15252/emmm.202013105. [PMID: 33015938]
  • Pooja M, Gangavaram Jyothi Reddy, Kanipakam Hema, Sujatha Dodoala, Bharathi Koganti. Unravelling high-affinity binding compounds towards transmembrane protease serine 2 enzyme in treating SARS-CoV-2 infection using molecular modelling and docking studies. European journal of pharmacology. 2021 Jan; 890(?):173688. doi: 10.1016/j.ejphar.2020.173688. [PMID: 33130280]
  • Wakana Takahashi, Taro Yoneda, Hayato Koba, Tsukasa Ueda, Noriaki Tsuji, Haruhiko Ogawa, Hidesaku Asakura. Potential mechanisms of nafamostat therapy for severe COVID-19 pneumonia with disseminated intravascular coagulation. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2021 Jan; 102(?):529-531. doi: 10.1016/j.ijid.2020.10.093. [PMID: 33157292]
  • Hidesaku Asakura, Haruhiko Ogawa. COVID-19-associated coagulopathy and disseminated intravascular coagulation. International journal of hematology. 2021 Jan; 113(1):45-57. doi: 10.1007/s12185-020-03029-y. [PMID: 33161508]
  • Keishi Yamasaki, Koji Nishi, Kenji Tsukigawa, Kazuaki Taguchi, Masaki Otagiri, Hakaru Seo. Possible Role of Electrolytes on the Formation of Precipitates during the Infusion of Nafamostat Mesilate in Hemodialysis. Biological & pharmaceutical bulletin. 2021; 44(2):259-265. doi: 10.1248/bpb.b20-00808. [PMID: 33518678]
  • Sho Iwasaka, Yuji Shono, Kentaro Tokuda, Kosuke Nakashima, Yuzo Yamamoto, Jun Maki, Yoji Nagasaki, Nobuyuki Shimono, Tomohiko Akahoshi, Tomoaki Taguchi. Clinical improvement in a patient with severe coronavirus disease 2019 after administration of hydroxychloroquine and continuous hemodiafiltlation with nafamostat mesylate. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy. 2020 Dec; 26(12):1319-1323. doi: 10.1016/j.jiac.2020.08.001. [PMID: 32893123]
  • Namrta Choudhry, Xin Zhao, Dan Xu, Mark Zanin, Weisan Chen, Zifeng Yang, Jianxin Chen. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Journal of medicinal chemistry. 2020 11; 63(22):13205-13227. doi: 10.1021/acs.jmedchem.0c00626. [PMID: 32845145]
  • H R Rangel, J T Ortega, S Maksoud, F H Pujol, M L Serrano. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors. Virus research. 2020 11; 289(?):198154. doi: 10.1016/j.virusres.2020.198154. [PMID: 32918944]
  • Hiroyuki Fujii, Taisuke Tsuji, Tatsuya Yuba, Shunya Tanaka, Yoshifumi Suga, Aosa Matsuyama, Ayaka Omura, Shinsuke Shiotsu, Chieko Takumi, Seiko Ono, Masahito Horiguchi, Noriya Hiraoka. High levels of anti-SSA/Ro antibodies in COVID-19 patients with severe respiratory failure: a case-based review : High levels of anti-SSA/Ro antibodies in COVID-19. Clinical rheumatology. 2020 Nov; 39(11):3171-3175. doi: 10.1007/s10067-020-05359-y. [PMID: 32844364]
  • Safaa M Kishk, Rania M Kishk, Asmaa S A Yassen, Mohamed S Nafie, Nader A Nemr, Gamal ElMasry, Salim Al-Rejaie, Claire Simons. Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies. Molecules (Basel, Switzerland). 2020 Oct; 25(21):. doi: 10.3390/molecules25215007. [PMID: 33137894]
  • Naohide Kuriyama, Kana Matsumoto, Kunihiko Morita, Yasuyo Shimomura, Yoshitaka Hara, Daisuke Hasegawa, Tomoyuki Nakamura, Chizuru Yamashita, Yu Kato, Hidefumi Komura, Osamu Nishida. Nafamostat mesilate inhibits linezolid metabolism via its antioxidant effects. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2020 Oct; 24(5):499-502. doi: 10.1111/1744-9987.13545. [PMID: 32524735]
  • Tomoya Sagawa, Ken-Ichiro Inoue, Hirohisa Takano. Preventing the clinical manifestations and disease progression of coronavirus disease using clinically proven protease inhibitors. Critical care (London, England). 2020 08; 24(1):511. doi: 10.1186/s13054-020-03235-4. [PMID: 32811550]
  • Toru Hifumi, Shutaro Isokawa, Norio Otani, Shinichi Ishimatsu. Adverse events associated with nafamostat mesylate and favipiravir treatment in COVID-19 patients. Critical care (London, England). 2020 08; 24(1):497. doi: 10.1186/s13054-020-03227-4. [PMID: 32787901]
  • Hiroki Ishii, Chiaki Miyoshi, Keiji Hirai, Junki Morino, Saori Minato, Shohei Kaneko, Katsunori Yanai, Momoko Matsuyama, Taisuke Kitano, Mitsutoshi Shindo, Akinori Aomatsu, Hiroshi Shimoyama, Haruhisa Miyazawa, Kiyonori Ito, Yuichiro Ueda, Yoshio Kaku, Taro Hoshino, Susumu Ookawara, Yoshiyuki Morishita. Induction of hemodialysis with an arteriovenous fistula in a patient with hemophilia A. CEN case reports. 2020 08; 9(3):225-231. doi: 10.1007/s13730-020-00461-1. [PMID: 32180153]
  • Kent Doi, Mahoko Ikeda, Naoki Hayase, Kyoji Moriya, Naoto Morimura. Nafamostat mesylate treatment in combination with favipiravir for patients critically ill with Covid-19: a case series. Critical care (London, England). 2020 07; 24(1):392. doi: 10.1186/s13054-020-03078-z. [PMID: 32620147]
  • Hong Zhou, Yan Fang, Tao Xu, Wei-Jian Ni, Ai-Zong Shen, Xiao-Ming Meng. Potential therapeutic targets and promising drugs for combating SARS-CoV-2. British journal of pharmacology. 2020 07; 177(14):3147-3161. doi: 10.1111/bph.15092. [PMID: 32368792]
  • Sukbin Jang, Ji-Young Rhee. Three cases of treatment with nafamostat in elderly patients with COVID-19 pneumonia who need oxygen therapy. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2020 Jul; 96(?):500-502. doi: 10.1016/j.ijid.2020.05.072. [PMID: 32470602]
  • Mizuki Yamamoto, Maki Kiso, Yuko Sakai-Tagawa, Kiyoko Iwatsuki-Horimoto, Masaki Imai, Makoto Takeda, Noriko Kinoshita, Norio Ohmagari, Jin Gohda, Kentaro Semba, Zene Matsuda, Yasushi Kawaguchi, Yoshihiro Kawaoka, Jun-Ichiro Inoue. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses. 2020 06; 12(6):. doi: 10.3390/v12060629. [PMID: 32532094]
  • Hidesaku Asakura, Haruhiko Ogawa. Potential of heparin and nafamostat combination therapy for COVID-19. Journal of thrombosis and haemostasis : JTH. 2020 06; 18(6):1521-1522. doi: 10.1111/jth.14858. [PMID: 32302456]
  • Markus Hoffmann, Simon Schroeder, Hannah Kleine-Weber, Marcel A Müller, Christian Drosten, Stefan Pöhlmann. Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19. Antimicrobial agents and chemotherapy. 2020 05; 64(6):. doi: 10.1128/aac.00754-20. [PMID: 32312781]
  • Mutsuo Yamaya, Hidekazu Nishimura, Xue Deng, Akiko Kikuchi, Ryoichi Nagatomi. Protease Inhibitors: Candidate Drugs to Inhibit Severe Acute Respiratory Syndrome Coronavirus 2 Replication. The Tohoku journal of experimental medicine. 2020 05; 251(1):27-30. doi: 10.1620/tjem.251.27. [PMID: 32448818]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Abhay Ps Rathore, Chinmay Kumar Mantri, Siti Ab Aman, Ayesa Syenina, Justin Ooi, Cyril J Jagaraj, Chi Ching Goh, Hasitha Tissera, Annelies Wilder-Smith, Lai Guan Ng, Duane J Gubler, Ashley L St John. Dengue virus-elicited tryptase induces endothelial permeability and shock. The Journal of clinical investigation. 2019 07; 129(10):4180-4193. doi: 10.1172/jci128426. [PMID: 31265436]
  • Yuji Miyatake, Shohei Makino, Kenta Kubota, Moritoki Egi, Satoshi Mizobuchi. Association between Intra-Circuit Activated Clotting Time and Incidence of Bleeding Complications during Continuous Renal Replacement Therapy using Nafamostat Mesilate: a Retrospective Pilot Observational Study. The Kobe journal of medical sciences. 2017 Aug; 63(1):E30-E36. doi: NULL. [PMID: 29434171]
  • Mizuki Yamamoto, Shutoku Matsuyama, Xiao Li, Makoto Takeda, Yasushi Kawaguchi, Jun-Ichiro Inoue, Zene Matsuda. Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrobial agents and chemotherapy. 2016 11; 60(11):6532-6539. doi: 10.1128/aac.01043-16. [PMID: 27550352]
  • Hyo Shik Kim, Kyung Eun Lee, Ji Hyun Oh, Chan Sung Jung, Dughyun Choi, Yunsuek Kim, Jin Seok Jeon, Dong Cheol Han, Hyunjin Noh. Cardiac arrest caused by nafamostat mesilate. Kidney research and clinical practice. 2016 Sep; 35(3):187-9. doi: 10.1016/j.krcp.2015.10.003. [PMID: 27668164]
  • K-R Na, H Choi, J Y Jeong, K W Lee, Y-K Chang, D E Choi. Nafamostat Mesilate Attenuates Ischemia-Reperfusion-Induced Renal Injury. Transplantation proceedings. 2016 Jul; 48(6):2192-9. doi: 10.1016/j.transproceed.2016.03.050. [PMID: 27569970]
  • Xiangjie Guo, Liqin Zhai, Ruobing Xue, Jieru Shi, Qiang Zeng, Cairong Gao. Mast Cell Tryptase Contributes to Pancreatic Cancer Growth through Promoting Angiogenesis via Activation of Angiopoietin-1. International journal of molecular sciences. 2016 May; 17(6):. doi: 10.3390/ijms17060834. [PMID: 27240355]
  • Sawako Goto, Susumu Ookawara, Kaoru Tabei. Effectiveness of Plasma Exchange for Acute Pancreatitis Induced by Hypertriglyceridemia During Pregnancy. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2016 Feb; 20(1):98-9. doi: 10.1111/1744-9987.12373. [PMID: 26626304]
  • Shohei Makino, Moritoki Egi, Hiroshi Kita, Yuji Miyatake, Kenta Kubota, Satoshi Mizobuchi. Comparison of nafamostat mesilate and unfractionated heparin as anticoagulants during continuous renal replacement therapy. The International journal of artificial organs. 2016 Jan; 39(1):16-21. doi: 10.5301/ijao.5000465. [PMID: 26868216]
  • Ji-Young Choi, Yun-Jeong Kang, Hye Min Jang, Hee-Yeon Jung, Jang-Hee Cho, Sun-Hee Park, Yong-Lim Kim, Chan-Duck Kim. Nafamostat Mesilate as an Anticoagulant During Continuous Renal Replacement Therapy in Patients With High Bleeding Risk: A Randomized Clinical Trial. Medicine. 2015 Dec; 94(52):e2392. doi: 10.1097/md.0000000000002392. [PMID: 26717390]
  • Francisco M Franco, Darin E Jones, Peter K W Harris, Zhenfu Han, Scott A Wildman, Cassie M Jarvis, James W Janetka. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Bioorganic & medicinal chemistry. 2015 May; 23(10):2328-43. doi: 10.1016/j.bmc.2015.03.072. [PMID: 25882520]
  • Hiroaki Kawano, Tomoko Hata, Akiko Uda, Koji Maemura. Use of rivaroxaban for the effective management of disseminated intravascular coagulation associated with abdominal aortic aneurysm. Internal medicine (Tokyo, Japan). 2015; 54(20):2625-8. doi: 10.2169/internalmedicine.54.4942. [PMID: 26466700]
  • Hideo Wada, Takeshi Matsumoto, Yoshiki Yamashita. [Recent therapeutic strategy for disseminated intravascular coagulation]. [Rinsho ketsueki] The Japanese journal of clinical hematology. 2014 Jan; 55(1):75-82. doi: NULL. [PMID: 24492040]
  • Yong Kyu Lee, Hae Won Lee, Kyu Hun Choi, Beom Seok Kim. Ability of nafamostat mesilate to prolong filter patency during continuous renal replacement therapy in patients at high risk of bleeding: a randomized controlled study. PloS one. 2014; 9(10):e108737. doi: 10.1371/journal.pone.0108737. [PMID: 25302581]
  • Seun Deuk Hwang, Yu Kyung Hyun, Sung Jin Moon, Sang Choel Lee, Soo Young Yoon. Nafamostat mesilate for anticoagulation in continuous renal replacement therapy. The International journal of artificial organs. 2013 Mar; 36(3):208-16. doi: 10.5301/ijao.5000191. [PMID: 23404639]
  • Kenei Furukawa, Tadashi Uwagawa, Ryota Iwase, Koichiro Haruki, Yuki Fujiwara, Takeshi Gocho, Hiroaki Shiba, Takeyuki Misawa, Katsuhiko Yanaga. Prognostic factors of unresectable pancreatic cancer treated with nafamostat mesilate combined with gemcitabine chemotherapy. Anticancer research. 2012 Nov; 32(11):5121-6. doi: NULL. [PMID: 23155291]
  • Na Na Baek, Hye Ryoun Jang, Wooseong Huh, Yoon-Goo Kim, Dae Joong Kim, Ha Young Oh, Jung Eun Lee. The role of nafamostat mesylate in continuous renal replacement therapy among patients at high risk of bleeding. Renal failure. 2012; 34(3):279-85. doi: 10.3109/0886022x.2011.647293. [PMID: 22251267]
  • Thomas Gobbetti, Nicolas Cenac, Jean-Paul Motta, Corinne Rolland, Laurence Martin, Patricia Andrade-Gordon, Martin Steinhoff, Elisabetta Barocelli, Nathalie Vergnolle. Serine protease inhibition reduces post-ischemic granulocyte recruitment in mouse intestine. The American journal of pathology. 2012 Jan; 180(1):141-52. doi: 10.1016/j.ajpath.2011.09.031. [PMID: 22067907]
  • Angelina E Altshuler, Alexander H Penn, Jessica A Yang, Ga-Ram Kim, Geert W Schmid-Schönbein. Protease activity increases in plasma, peritoneal fluid, and vital organs after hemorrhagic shock in rats. PloS one. 2012; 7(3):e32672. doi: 10.1371/journal.pone.0032672. [PMID: 22479334]
  • Yukio Maruyama, Hiraku Yoshida, Shigehiko Uchino, Keitaro Yokoyama, Hiroyasu Yamamoto, Masanori Takinami, Tatsuo Hosoya. Nafamostat mesilate as an anticoagulant during continuous veno-venous hemodialysis: a three-year retrospective cohort study. The International journal of artificial organs. 2011 Jul; 34(7):571-6. doi: 10.5301/ijao.2011.8535. [PMID: 21786254]
  • Sang Jin Han, Hyoung Soo Kim, Kun Il Kim, Sung Mi Whang, Kyung Soon Hong, Won Ki Lee, Sun Hee Lee. Use of nafamostat mesilate as an anticoagulant during extracorporeal membrane oxygenation. Journal of Korean medical science. 2011 Jul; 26(7):945-50. doi: 10.3346/jkms.2011.26.7.945. [PMID: 21738350]
  • Yuki Fujiwara, Kenei Furukawa, Yohta Shimada, Tomonori Iida, Hiroaki Shiba, Tadashi Uwagawa, Takeyuki Misawa, Toya Ohashi, Katsuhiko Yanaga. Combination paclitaxel and inhibitor of nuclear factor κB activation improves therapeutic outcome for model mice with peritoneal dissemination of pancreatic cancer. Pancreas. 2011 May; 40(4):600-7. doi: 10.1097/mpa.0b013e31820b9257. [PMID: 21343836]
  • M Steensgaard, P Svenningsen, A R Tinning, T D Nielsen, F Jørgensen, G Kjaersgaard, K Madsen, B L Jensen. Apical serine protease activity is necessary for assembly of a high-resistance renal collecting duct epithelium. Acta physiologica (Oxford, England). 2010 Dec; 200(4):347-59. doi: 10.1111/j.1748-1716.2010.02170.x. [PMID: 20645929]
  • Yoon Hee Kim, Young Kwon Go, Jung Un Lee, Woo Suk Chung, Yong Sup Shin, Kyu Cheol Han, Ji Eun Shin, Suk Hoon Lee. Pretreatment with nafamostat mesilate, a kallikrein inhibitor, to decrease withdrawal response associated with rocuronium. Journal of anesthesia. 2010 Aug; 24(4):549-52. doi: 10.1007/s00540-010-0964-8. [PMID: 20499255]
  • Toshio Shinoda. Anticoagulation in acute blood purification for acute renal failure in critical care. Contributions to nephrology. 2010; 166(?):119-125. doi: 10.1159/000314861. [PMID: 20472999]
  • Shoichi Nishise, Yuji Takeda, Yuko Nishise, Shoichiro Fujishima, Tomohiko Orii, Sayaka Otake, Takeshi Sato, Yu Sasaki, Hiroaki Takeda, Sumio Kawata. Biological effect of anaphylatoxin C5a on the generation of anti-inflammatory substances in leukocyte adsorption. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2009 Dec; 13(6):509-14. doi: 10.1111/j.1744-9987.2009.00779.x. [PMID: 19954474]
  • Jae Hyuck Chang, In Seok Lee, Hyung Keun Kim, Yu Kyung Cho, Jae Myung Park, Sang Woo Kim, Myung-Gyu Choi, In-Sik Chung. Nafamostat for Prophylaxis against Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis Compared with Gabexate. Gut and liver. 2009 Sep; 3(3):205-10. doi: 10.5009/gnl.2009.3.3.205. [PMID: 20431747]
  • Ashita J Tolwani, Keith M Wille. Anticoagulation for continuous renal replacement therapy. Seminars in dialysis. 2009 Mar; 22(2):141-5. doi: 10.1111/j.1525-139x.2008.00545.x. [PMID: 19426417]
  • T Uwagawa, T Misawa, T Sakamoto, R Ito, T Gocho, H Shiba, S Wakiyama, S Hirohara, S Sadaoka, K Yanaga. A phase I study of full-dose gemcitabine and regional arterial infusion of nafamostat mesilate for advanced pancreatic cancer. Annals of oncology : official journal of the European Society for Medical Oncology. 2009 Feb; 20(2):239-43. doi: 10.1093/annonc/mdn640. [PMID: 18836085]
  • Jae Won Yang, Byoung Geun Han, Bi Ro Kim, Yo Han Lee, Young Sub Kim, Jong Myeong Yu, Seung Ok Choi. Superior outcome of nafamostat mesilate as an anticoagulant in patients undergoing maintenance hemodialysis with intracerebral hemorrhage. Renal failure. 2009; 31(8):668-75. doi: 10.3109/08860220903180616. [PMID: 19814633]
  • Yan-Guang Cao, Yuan-Cheng Chen, Kun Hao, Ming Zhang, Xiao-Quan Liu. An in vivo approach for globally estimating the drug flow between blood and tissue for nafamostat mesilate: the main hydrolysis site determination in human. Biological & pharmaceutical bulletin. 2008 Nov; 31(11):1985-9. doi: 10.1248/bpb.31.1985. [PMID: 18981560]
  • Masayuki Ishizaki, Hiroyuki Tanaka, Daisuke Kajiwara, Tatsuyuki Toyohara, Keiko Wakahara, Naoki Inagaki, Hiroichi Nagai. Nafamostat mesilate, a potent serine protease inhibitor, inhibits airway eosinophilic inflammation and airway epithelial remodeling in a murine model of allergic asthma. Journal of pharmacological sciences. 2008 Nov; 108(3):355-63. doi: 10.1254/jphs.08162fp. [PMID: 19008643]
  • Hansjörg Schwertz, Justin M Carter, Martin Russ, Sebastian Schubert, Axel Schlitt, Ute Buerke, Martin Schmidt, Heinz Hillen, Karl Werdan, Michael Buerke. Serine protease inhibitor nafamostat given before reperfusion reduces inflammatory myocardial injury by complement and neutrophil inhibition. Journal of cardiovascular pharmacology. 2008 Aug; 52(2):151-60. doi: 10.1097/fjc.0b013e318180188b. [PMID: 18670364]
  • Yan-guang Cao, Ming Zhang, Dan Yu, Jing-ping Shao, Yuan-cheng Chen, Xiao-quan Liu. A method for quantifying the unstable and highly polar drug nafamostat mesilate in human plasma with optimized solid-phase extraction and ESI-MS detection: more accurate evaluation for pharmacokinetic study. Analytical and bioanalytical chemistry. 2008 Jun; 391(3):1063-71. doi: 10.1007/s00216-008-2054-4. [PMID: 18392693]
  • Taiichi Otani, Hirona Yamamoto, Yasutsugu Bandai, Hiroshi Yoshimoto, Toshio Shinoda. Pancreaticoduodenectomy for bile duct carcinoma of a patient undergoing hemodialysis. Hepato-gastroenterology. 2008 Jan; 55(81):24-6. doi: NULL. [PMID: 18507072]
  • Zaccaria Ricci, Claudio Ronco. Year in review 2007: Critical Care--nephrology. Critical care (London, England). 2008; 12(5):230. doi: 10.1186/cc6952. [PMID: 18983705]
  • Erwin Otero Garcés, Josué Almeida Victorino, Francisco Verisimo Veronese. [Anticoagulation in continuous renal replacement therapies (CRRT)]. Revista da Associacao Medica Brasileira (1992). 2007 Sep; 53(5):451-5. doi: 10.1590/s0104-42302007000500023. [PMID: 17952356]
  • Shigehiko Uchino, Rinaldo Bellomo, Hiroshi Morimatsu, Stanislao Morgera, Miet Schetz, Ian Tan, Catherine Bouman, Ettiene Macedo, Noel Gibney, Ashita Tolwani, Heleen Oudemans-van Straaten, Claudio Ronco, John A Kellum. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (B.E.S.T. kidney) investigators. Intensive care medicine. 2007 Sep; 33(9):1563-70. doi: 10.1007/s00134-007-0754-4. [PMID: 17594074]
  • Shigeko Hara, Yoshifumi Ubara. [Uremic pericarditis]. Nihon rinsho. Japanese journal of clinical medicine. 2007 May; 65 Suppl 5(?):474-9. doi: NULL. [PMID: 17571422]
  • Satoshi Hagiwara, Hideo Iwasaka, Sigekiyo Matumoto, Takayuki Noguchi. Nafamostat mesilate inhibits high-mobility group box 1 by lipopolysaccharide stimulation in murine macrophage RAW 264.7. Shock (Augusta, Ga.). 2007 Apr; 27(4):429-35. doi: 10.1097/01.shk.0000239778.25775.ad. [PMID: 17414427]
  • Yoshio Okita, Toshiya Okahisa, Masahiro Sogabe, Masaharu Suzuki, Yoshiaki Ohnishi, Susumu Ito. Low-volume continuous hemodiafiltration with nafamostat mesilate increases trypsin clearance without decreasing plasma trypsin concentration in severe acute pancreatitis. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2007 Mar; 53(2):207-12. doi: 10.1097/mat.0b013e3180310473. [PMID: 17413562]
  • Hsing-Pang Hsieh, John T-A Hsu. Strategies of development of antiviral agents directed against influenza virus replication. Current pharmaceutical design. 2007; 13(34):3531-42. doi: 10.2174/138161207782794248. [PMID: 18220789]
  • Satoshi Hagiwara, Hideo Iwasaka, Takayuki Noguchi. Nafamostat mesilate inhibits the expression of HMGB1 in lipopolysaccharide-induced acute lung injury. Journal of anesthesia. 2007; 21(2):164-70. doi: 10.1007/s00540-006-0468-8. [PMID: 17458645]
  • Hideaki Miyaso, Yoshinori Morimoto, Michitaka Ozaki, Sanae Haga, Susumu Shinoura, Yasuhiro Choda, Hiroshi Murata, Goutaro Katsuno, Kamul Huda, Hideo Takahashi, Noriaki Tanaka, Hiromi Iwagaki. Protective effects of nafamostat mesilate on liver injury induced by lipopolysaccharide in rats: possible involvement of CD14 and TLR-4 downregulation on Kupffer cells. Digestive diseases and sciences. 2006 Nov; 51(11):2007-12. doi: 10.1007/s10620-006-9141-1. [PMID: 17072764]
  • Jamshid Amanzadeh, Robert F Reilly. Anticoagulation and continuous renal replacement therapy. Seminars in dialysis. 2006 Jul; 19(4):311-6. doi: 10.1111/j.1525-139x.2006.00178.x. [PMID: 16893409]
  • Hajime Nakae, Toshiko Igarashi, Kimitaka Tajimi. The dose of nafamostat mesilate during plasma exchange with continuous hemodiafiltration in the series-parallel circuit. Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy. 2006 Jun; 10(3):233-6. doi: 10.1111/j.1744-9987.2006.00374.x. [PMID: 16817786]
  • Masahiro Miyata, Toshiro Shirakawa, Bishnu Acharya, Shuji Terao, Akinobu Gotoh. Effects of nafamostat mesilate on ADP-induced platelet aggregation and disaggregation in hemodialysis patients. ASAIO journal (American Society for Artificial Internal Organs : 1992). 2006 May; 52(3):272-5. doi: 10.1097/01.mat.0000209224.94089.bc. [PMID: 16760715]
  • Shoichi Nishise, Yuji Takeda, Hiroaki Takeda, Katsuyoshi Ishihama, Tadahisa Fukui, Sumio Kawata. Complement activation is involved in biological responses to leukocyte adsorptive apheresis. Digestive diseases and sciences. 2006 May; 51(5):934-41. doi: 10.1007/s10620-005-9050-8. [PMID: 16642423]
  • Satoshi Yamaori, Nobuhiro Fujiyama, Mika Kushihara, Tatsuya Funahashi, Toshiyuki Kimura, Ikuo Yamamoto, Tomomichi Sone, Masakazu Isobe, Tohru Ohshima, Kenji Matsumura, Minoru Oda, Kazuhito Watanabe. Involvement of human blood arylesterases and liver microsomal carboxylesterases in nafamostat hydrolysis. Drug metabolism and pharmacokinetics. 2006 Apr; 21(2):147-55. doi: 10.2133/dmpk.21.147. [PMID: 16702735]
  • Tomasz Hryszko, Keisuke Inaba, Hayato Ihara, Yuko Suzuki, Hideo Mogami, Tetsumei Urano. Nafamostat attenuated the impairment of fibrinolysis in animal sepsis model by suppressing the increase of plasminogen activator inhibitor type 1. The Journal of trauma. 2006 Apr; 60(4):859-64. doi: 10.1097/01.ta.0000215566.74588.27. [PMID: 16612309]
  • Naoto Gotohda, Hiromi Iwagaki, Michitaka Ozaki, Masaru Konishi, Toshio Nakagohri, Shinichiro Takahashi, Takahito Yagi, Taira Kinoshita, Noriaki Tanaka. The role of a protease inhibitor against hepatectomy. Hepato-gastroenterology. 2006 Jan; 53(67):115-9. doi: NULL. [PMID: 16506388]
  • Jacek Borawski. Myeloperoxidase as a marker of hemodialysis biocompatibility and oxidative stress: the underestimated modifying effects of heparin. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2006 Jan; 47(1):37-41. doi: 10.1053/j.ajkd.2005.10.001. [PMID: 16377383]
  • Keiji Ikawa, Takashi Nishioka, Zhiqian Yu, Yumiko Sugawara, Junichi Kawagoe, Toshiaki Takizawa, Valeria Primo, Boris Nikolic, Toshinobu Kuroishi, Takashi Sasano, Hidetoshi Shimauchi, Haruhiko Takada, Yasuo Endo, Shunji Sugawara. Involvement of neutrophil recruitment and protease-activated receptor 2 activation in the induction of IL-18 in mice. Journal of leukocyte biology. 2005 Nov; 78(5):1118-26. doi: 10.1189/jlb.0305151. [PMID: 16260585]
  • Yukio Mikami, Kazunori Takeda, Kazuhisa Matsuda, Huang Qiu-Feng, Shoji Fukuyama, Shinichi Egawa, Makoto Sunamura, Seiki Matsuno. Rat experimental model of continuous regional arterial infusion of protease inhibitor and its effects on severe acute pancreatitis. Pancreas. 2005 Apr; 30(3):248-53. doi: 10.1097/01.mpa.0000153328.54569.28. [PMID: 15782103]