N-acetylarginine (BioDeep_00000018147)

 

Secondary id: BioDeep_00000604216

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


(2S)-5-carbamimidamido-2-acetamidopentanoic acid

化学式: C8H16N4O3 (216.1222)
中文名称: N-Α-乙酰-L-精氨酸, N-乙酰-L-精氨酸
谱图信息: 最多检出来源 Homo sapiens(feces) 31.47%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

N-acetylarginine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/n-acetylarginine (retrieved 2025-02-21) (BioDeep RN: BioDeep_00000018147). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(=O)NC(CCCN=C(N)N)C(=O)O
InChI: InChI=1S/C8H16N4O3/c1-5(13)12-6(7(14)15)3-2-4-11-8(9)10/h6H,2-4H2,1H3,(H,12,13)(H,14,15)(H4,9,10,11)

描述信息

N-alpha-Acetyl-L-arginine, also known as N-alpha-acetylarginine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylarginine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylarginine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-arginine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylarginine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free arginine can also occur. Many N-acetylamino acids, including N-acetylarginine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759; PMID: 7777105). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-alpha-Acetyl-L-arginine serum levels (and other guanidino compounds) were elevated of all the hyperargininemic patients are higher than the normal range. Untreated hyperargininemic patients have the highest guanidino compound levels in cerebrospinal fluid. N-alpha-Acetyl-L-arginine is also increased in the urine or hyperargininemic patients. N-alpha-Acetyl-L-arginine is one of the guanidino compounds found elevated in the serum of hemodialyzed renal insufficient (uremic) pediatric patients.
N-alpha-Acetylarginine is one of the guanidino compounds found elevated in the serum of an hemodialyzed renal insufficient (uremic) pediatric population. (PMID 7777105)
N-Acetyl-L-arginine (Ac-Arg-OH) is one of the guanidino compounds found elevated in the serum of an hemodialyzed renal insufficient (uremic) pediatric population.

同义名列表

17 个代谢物同义名

(2S)-5-carbamimidamido-2-acetamidopentanoic acid; 2-Acetamido-5-guanidinopentanoic acid; N-alpha-Acetyl-L-arginine; N-alpha-L-Acetyl-arginine; N(a)-Acetyl-L-arginine; N~2~-acetyl-L-arginine; N-alpha-Acetylarginine; N(2)-Acetyl-L-arginine; N(Α)-acetyl-L-arginine; N-a-L-Acetyl-arginine; N-a-Acetyl-L-arginine; N-Α-L-acetyl-arginine; N2-Acetyl-L-arginine; N-Acetyl-L-arginine; Acetyl arginine; N-Ac-L-arg-OH; Ac-Arg-OH



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Shu-Yi Liao, Megan R Showalter, Angela L Linderholm, Lisa Franzi, Celeste Kivler, Yao Li, Michael R Sa, Zachary A Kons, Oliver Fiehn, Lihong Qi, Amir A Zeki, Nicholas J Kenyon. l-Arginine supplementation in severe asthma. JCI insight. 2020 07; 5(13):. doi: 10.1172/jci.insight.137777. [PMID: 32497023]
  • Simone Sasso, Leticia Dalmedico, Débora Delwing-Dal Magro, Angela T S Wyse, Daniela Delwing-de Lima. Effect of N-acetylarginine, a metabolite accumulated in hyperargininemia, on parameters of oxidative stress in rats: protective role of vitamins and L-NAME. Cell biochemistry and function. 2014 Aug; 32(6):511-9. doi: 10.1002/cbf.3045. [PMID: 25042906]
  • Ana Marta Silva, Anabela Cordeiro-da-Silva, Graham H Coombs. Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS neglected tropical diseases. 2011 Dec; 5(12):e1451. doi: 10.1371/journal.pntd.0001451. [PMID: 22206037]
  • James M Mathews, Scott L Watson, Rodney W Snyder, Jason P Burgess, Daniel L Morgan. Reaction of the butter flavorant diacetyl (2,3-butanedione) with N-α-acetylarginine: a model for epitope formation with pulmonary proteins in the etiology of obliterative bronchiolitis. Journal of agricultural and food chemistry. 2010 Dec; 58(24):12761-8. doi: 10.1021/jf103251w. [PMID: 21077678]
  • Daniela Delwing-de Lima, Luiz Felipe Wollinger, Ana Carolina Mesquita Casagrande, Fábio Delwing, José Geraldo Pereira da Cruz, Angela T S Wyse, Débora Delwing-Dal Magro. Guanidino compounds inhibit acetylcholinesterase and butyrylcholinesterase activities: effect neuroprotector of vitamins E plus C. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 2010 Oct; 28(6):465-73. doi: 10.1016/j.ijdevneu.2010.06.008. [PMID: 20599604]
  • Magdalena M Staniszewska, Ram H Nagaraj. 3-hydroxykynurenine-mediated modification of human lens proteins: structure determination of a major modification using a monoclonal antibody. The Journal of biological chemistry. 2005 Jun; 280(23):22154-64. doi: 10.1074/jbc.m501419200. [PMID: 15817458]
  • Irene Zagol-Ikapitte, Nathalie Bernoud-Hubac, Venkataraman Amarnath, L Jackson Roberts, Olivier Boutaud, John A Oates. Characterization of bis(levuglandinyl) urea derivatives as products of the reaction between prostaglandin H2 and arginine. Biochemistry. 2004 May; 43(18):5503-10. doi: 10.1021/bi049842r. [PMID: 15122916]
  • O Levillain, B Marescau, I Possemiers, M Al Banchaabouchi, P P De Deyn. Influence of 72\% injury in one kidney on several organs involved in guanidino compound metabolism: a time course study. Pflugers Archiv : European journal of physiology. 2001 Jul; 442(4):558-69. doi: 10.1007/s004240100581. [PMID: 11510889]
  • S Wallner, A Hermetter, B Mayer, T C Wascher. The alpha-amino group of L-arginine mediates its antioxidant effect. European journal of clinical investigation. 2001 Feb; 31(2):98-102. doi: 10.1046/j.1365-2362.2001.00771.x. [PMID: 11168445]
  • P P De Deyn, P Robitaille, M Vanasse, I A Qureshi, B Marescau. Serum guanidino compound levels in uremic pediatric patients treated with hemodialysis or continuous cycle peritoneal dialysis. Correlations between nerve conduction velocities and altered guanidino compound concentrations. Nephron. 1995; 69(4):411-7. doi: 10.1159/000188511. [PMID: 7777105]
  • T W Lo, M E Westwood, A C McLellan, T Selwood, P J Thornalley. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. The Journal of biological chemistry. 1994 Dec; 269(51):32299-305. doi: NULL. [PMID: 7798230]
  • T Selwood, P J Thornalley. Binding of methylglyoxal to albumin and formation of fluorescent adducts. Inhibition by arginine, N-alpha-acetylarginine and aminoguanidine. Biochemical Society transactions. 1993 May; 21(2):170S. doi: 10.1042/bst021170s. [PMID: 8359423]
  • P De Deyn, B Marescau, W Lornoy, I Becaus, A Lowenthal. Guanidino compounds in uraemic dialysed patients. Clinica chimica acta; international journal of clinical chemistry. 1986 Jun; 157(2):143-50. doi: 10.1016/0009-8981(86)90220-2. [PMID: 3719996]