Sulindac sulfide (BioDeep_00000018007)

   

human metabolite Endogenous blood metabolite Chemicals and Drugs


代谢物信息卡片


2-[(1Z)-5-fluoro-2-methyl-1-{[4-(methylsulfanyl)phenyl]methylidene}-1H-inden-3-yl]acetic acid

化学式: C20H17FO2S (340.0933234)
中文名称: 5-氟-2-甲基-1-(4-甲硫基亚苄基)茚-3-乙酸
谱图信息: 最多检出来源 Homo sapiens(blood) 93.55%

分子结构信息

SMILES: CC1=C(C2=C(C1=CC3=CC=C(C=C3)SC)C=CC(=C2)F)CC(=O)O
InChI: InChI=1S/C20H17FO2S/c1-12-17(9-13-3-6-15(24-2)7-4-13)16-8-5-14(21)10-19(16)18(12)11-20(22)23/h3-10H,11H2,1-2H3,(H,22,23)/b17-9-

描述信息

Sulindac sulfide is a metabolite of sulindac. Sulindac is a non-steroidal anti-inflammatory drug of the arylalkanoic acid class that is marketed in the UK & U.S. by Merck as Clinoril. (Wikipedia)
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor
D000893 - Anti-Inflammatory Agents
D000970 - Antineoplastic Agents
D018501 - Antirheumatic Agents

同义名列表

8 个代谢物同义名

2-[(1Z)-5-fluoro-2-methyl-1-{[4-(methylsulfanyl)phenyl]methylidene}-1H-inden-3-yl]acetic acid; [(3Z)-6-fluoro-2-methyl-3-{[4-(methylsulfanyl)phenyl]methylidene}inden-1-yl]acetic acid; Sulindac sulfide, sodium salt; Sulindac sulfide, (e)-isomer; Sulindac sulfide, (Z)-isomer; cis-Sulindac sulfide; Sulindac sulphide; Sulindac Sulfide



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jin Won Sung, Hwi-Yeol Yun, Sunny Park, Young Ju Kim, Jeong Yee, Kyung Eun Lee, Byungjeong Song, Jee Eun Chung, Hye Sun Gwak. Population Pharmacokinetics of Sulindac and Genetic Polymorphisms of FMO3 and AOX1 in Women with Preterm Labor. Pharmaceutical research. 2020 Jan; 37(3):44. doi: 10.1007/s11095-020-2765-6. [PMID: 31993760]
  • Seyedeh Atekeh Torabizadeh, Mehdi Rezaeifar, Ali Jomehzadeh, Farzaneh Nabizadeh Haghighi, Mehdi Ansari. Radioprotective Potential of Sulindac Sulfide to Prevent DNA Damage Due to Ionizing Radiation. Drug design, development and therapy. 2019; 13(?):4127-4134. doi: 10.2147/dddt.s218022. [PMID: 31827319]
  • Yong-Jun Tang, Kai Hu, Wei-Hua Huang, Chong-Zhi Wang, Zhi Liu, Yao Chen, Dong-Sheng Ouyang, Zhi-Rong Tan, Hong-Hao Zhou, Chun-Su Yuan. Effects of FMO3 Polymorphisms on Pharmacokinetics of Sulindac in Chinese Healthy Male Volunteers. BioMed research international. 2017; 2017(?):4189678. doi: 10.1155/2017/4189678. [PMID: 28331852]
  • Sunny Park, Na Ra Lee, Kyung Eun Lee, Jin Young Park, Young Ju Kim, Hye Sun Gwak. Effects of single-nucleotide polymorphisms of FMO3 and FMO6 genes on pharmacokinetic characteristics of sulindac sulfide in premature labor. Drug metabolism and disposition: the biological fate of chemicals. 2014 Jan; 42(1):40-3. doi: 10.1124/dmd.113.054106. [PMID: 24173915]
  • Linda Saxe Einbond, Jason Mighty, Ryota Kashiwazaki, Mario Figueroa, Filza Jalees, Ulyana Munoz Acuna, Onica Le Gendre, David A Foster, Edward J Kennelly. Garcinia benzophenones inhibit the growth of human colon cancer cells and synergize with sulindac sulfide and turmeric. Anti-cancer agents in medicinal chemistry. 2013 Dec; 13(10):1540-50. doi: 10.2174/18715206113139990095. [PMID: 23848206]
  • Andy J Liedtke, Brenda C Crews, Cristina M Daniel, Anna L Blobaum, Philip J Kingsley, Kebreab Ghebreselasie, Lawrence J Marnett. Cyclooxygenase-1-selective inhibitors based on the (E)-2'-des-methyl-sulindac sulfide scaffold. Journal of medicinal chemistry. 2012 Mar; 55(5):2287-300. doi: 10.1021/jm201528b. [PMID: 22263894]
  • Svenja D Steinbrink, Carlo Pergola, Ulrike Bühring, Sven George, Julia Metzner, Astrid S Fischer, Ann-Kathrin Häfner, Joanna M Wisniewska, Gerd Geisslinger, Oliver Werz, Dieter Steinhilber, Thorsten J Maier. Sulindac sulfide suppresses 5-lipoxygenase at clinically relevant concentrations. Cellular and molecular life sciences : CMLS. 2010 Mar; 67(5):797-806. doi: 10.1007/s00018-009-0206-0. [PMID: 20091083]
  • Shawn Hopewell, Nihar R Pandey, Ayesha Misquith, Erin Twomey, Daniel L Sparks. Phosphatidylinositol acts through mitogen-activated protein kinase to stimulate hepatic apolipoprotein A-I secretion. Metabolism: clinical and experimental. 2008 Dec; 57(12):1677-84. doi: 10.1016/j.metabol.2008.07.023. [PMID: 19013290]
  • Fernando Santos, Lígia Teixeira, Marlene Lúcio, Helena Ferreira, Diana Gaspar, José L F C Lima, Salette Reis. Interactions of sulindac and its metabolites with phospholipid membranes: an explanation for the peroxidation protective effect of the bioactive metabolite. Free radical research. 2008 Jul; 42(7):639-50. doi: 10.1080/10715760802270326. [PMID: 18654879]
  • Martin Gamerdinger, Angela B Clement, Christian Behl. Effects of sulindac sulfide on the membrane architecture and the activity of gamma-secretase. Neuropharmacology. 2008 May; 54(6):998-1005. doi: 10.1016/j.neuropharm.2008.02.009. [PMID: 18359496]
  • Richard M Page, Karlheinz Baumann, Masanori Tomioka, Blanca I Pérez-Revuelta, Akio Fukumori, Helmut Jacobsen, Alexander Flohr, Thomas Luebbers, Laurence Ozmen, Harald Steiner, Christian Haass. Generation of Abeta38 and Abeta42 is independently and differentially affected by familial Alzheimer disease-associated presenilin mutations and gamma-secretase modulation. The Journal of biological chemistry. 2008 Jan; 283(2):677-83. doi: 10.1074/jbc.m708754200. [PMID: 17962197]
  • Yen-Ling Chen, Yuh-Jyh Jong, Shou-Mei Wu. Capillary electrophoresis combining field-amplified sample stacking and electroosmotic flow suppressant for analysis of sulindac and its two metabolites in plasma. Journal of chromatography. A. 2006 Jun; 1119(1-2):176-82. doi: 10.1016/j.chroma.2006.02.054. [PMID: 16530777]
  • Aaron N Hata, Terry P Lybrand, Lawrence J Marnett, Richard M Breyer. Structural determinants of arylacetic acid nonsteroidal anti-inflammatory drugs necessary for binding and activation of the prostaglandin D2 receptor CRTH2. Molecular pharmacology. 2005 Mar; 67(3):640-7. doi: 10.1124/mol.104.007971. [PMID: 15563582]
  • Patrick C Fraering, Wenjuan Ye, Jean-Marc Strub, Georgia Dolios, Matthew J LaVoie, Beth L Ostaszewski, Alain van Dorsselaer, Rong Wang, Dennis J Selkoe, Michael S Wolfe. Purification and characterization of the human gamma-secretase complex. Biochemistry. 2004 Aug; 43(30):9774-89. doi: 10.1021/bi0494976. [PMID: 15274632]
  • Frantzy Etienne, Lionel Resnick, Daphna Sagher, Nathan Brot, Herbert Weissbach. Reduction of Sulindac to its active metabolite, sulindac sulfide: assay and role of the methionine sulfoxide reductase system. Biochemical and biophysical research communications. 2003 Dec; 312(4):1005-10. doi: 10.1016/j.bbrc.2003.10.203. [PMID: 14651971]
  • H Weiss, A Amberger, M Widschwendter, R Margreiter, D Ofner, P Dietl. Inhibition of store-operated calcium entry contributes to the anti-proliferative effect of non-steroidal anti-inflammatory drugs in human colon cancer cells. International journal of cancer. 2001 Jun; 92(6):877-82. doi: 10.1002/ijc.1280. [PMID: 11351310]
  • M Oshima, N Murai, S Kargman, M Arguello, P Luk, E Kwong, M M Taketo, J F Evans. Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer research. 2001 Feb; 61(4):1733-40. doi: . [PMID: 11245490]
  • M A Hamman, B D Haehner-Daniels, S A Wrighton, A E Rettie, S D Hall. Stereoselective sulfoxidation of sulindac sulfide by flavin-containing monooxygenases. Comparison of human liver and kidney microsomes and mammalian enzymes. Biochemical pharmacology. 2000 Jul; 60(1):7-17. doi: 10.1016/s0006-2952(00)00301-4. [PMID: 10807940]
  • M J Weyant, A M Carothers, M E Bertagnolli, M M Bertagnolli. Colon cancer chemopreventive drugs modulate integrin-mediated signaling pathways. Clinical cancer research : an official journal of the American Association for Cancer Research. 2000 Mar; 6(3):949-56. doi: . [PMID: 10741720]
  • M A Molina, M Sitja-Arnau, M G Lemoine, M L Frazier, F A Sinicrope. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer research. 1999 Sep; 59(17):4356-62. doi: NULL. [PMID: 10485483]
  • M Siluveru, J T Stewart. Determination of sulindac and its metabolites in human serum by reversed-phase high-performance liquid chromatography using on-line post-column ultraviolet irradiation and fluorescence detection. Journal of chromatography. B, Biomedical applications. 1995 Nov; 673(1):91-6. doi: 10.1016/0378-4347(95)00239-f. [PMID: 8925079]
  • W R Ravis, C J Diskin, K D Campagna, C R Clark, C L McMillian. Pharmacokinetics and dialyzability of sulindac and metabolites in patients with end-stage renal failure. Journal of clinical pharmacology. 1993 Jun; 33(6):527-34. doi: 10.1002/j.1552-4604.1993.tb04699.x. [PMID: 8366178]
  • D W Brandli, E Sarkissian, S C Ng, H E Paulus. Individual variability in concentrations of urinary sulindac sulfide. Clinical pharmacology and therapeutics. 1991 Dec; 50(6):650-5. doi: 10.1038/clpt.1991.203. [PMID: 1752108]
  • L O Eriksson, H Boström. Deactivation of sulindac-sulphide by human renal microsomes. Pharmacology & toxicology. 1988 Apr; 62(4):177-83. doi: 10.1111/j.1600-0773.1988.tb01868.x. [PMID: 3133648]
  • L O Eriksson, B Beermann, M Kallner. Renal function and tubular transport effects of sulindac and naproxen in chronic heart failure. Clinical pharmacology and therapeutics. 1987 Dec; 42(6):646-54. doi: 10.1038/clpt.1987.213. [PMID: 3319349]
  • D C Brater, S A Anderson, D Brown-Cartwright. Reversible acute decrease in renal function by NSAIDs in cirrhosis. The American journal of the medical sciences. 1987 Sep; 294(3):168-74. doi: 10.1097/00000441-198709000-00007. [PMID: 3661615]
  • T P Gibson, M R Dobrinska, J H Lin, L A Entwistle, R O Davies. Biotransformation of sulindac in end-stage renal disease. Clinical pharmacology and therapeutics. 1987 Jul; 42(1):82-8. doi: 10.1038/clpt.1987.112. [PMID: 3595070]
  • N Grgurinovich. High-performance liquid chromatography of sulindac and its sulphone and sulphide metabolites in plasma. Journal of chromatography. 1987 Feb; 414(1):211-6. doi: 10.1016/0378-4347(87)80043-9. [PMID: 3571386]
  • N Bayley, R W Warne, R F Moulds, R W Bury. A kinetic study of sulindac in the elderly. Australian and New Zealand journal of medicine. 1987 Feb; 17(1):39-42. doi: 10.1111/j.1445-5994.1987.tb05047.x. [PMID: 3476045]
  • W L Henrich, D C Brater, W B Campbell. Renal hemodynamic effects of therapeutic plasma levels of sulindac sulfide during hemorrhage. Kidney international. 1986 Feb; 29(2):484-9. doi: 10.1038/ki.1986.25. [PMID: 3754595]
  • H A Strong, N J Warner, A G Renwick, C F George. Sulindac metabolism: the importance of an intact colon. Clinical pharmacology and therapeutics. 1985 Oct; 38(4):387-93. doi: 10.1038/clpt.1985.192. [PMID: 4042521]
  • J H Lin, K C Yeh, D E Duggan. Effect of uremia and anephric state on the pharmacokinetics of sulindac and its metabolites in rats. I. An application of pharmacokinetic model for reversible metabolism. Drug metabolism and disposition: the biological fate of chemicals. 1985 Sep; 13(5):602-7. doi: NULL. [PMID: 2865111]
  • J H Lin, K C Yeh, D E Duggan. Effect of uremia and anephric state on the pharmacokinetics of sulindac and its metabolites in rats. II. Differential effects on the biliary excretion. Drug metabolism and disposition: the biological fate of chemicals. 1985 Sep; 13(5):608-13. doi: NULL. [PMID: 2865112]
  • D S Sitar, J A Owen, B MacDougall, T Hunter, P A Mitenko. Effects of age and disease on the pharmacokinetics and pharmacodynamics of sulindac. Clinical pharmacology and therapeutics. 1985 Aug; 38(2):228-34. doi: 10.1038/clpt.1985.163. [PMID: 4017423]
  • L S Olanoff, J A Cook, P V Halushka. Sulindac does not preserve renal prostacyclin synthesis during endotoxemia. Prostaglandins. 1985 Jun; 29(6):1031-7. doi: 10.1016/0090-6980(85)90226-6. [PMID: 3898231]
  • M J Miller, M M Bednar, J C McGiff. Renal metabolism of sulindac: functional implications. The Journal of pharmacology and experimental therapeutics. 1984 Nov; 231(2):449-56. doi: . [PMID: 6436473]
  • E J Zambraski, A N Chremos, M J Dunn. Comparison of the effects of sulindac with other cyclooxygenase inhibitors on prostaglandin excretion and renal function in normal and chronic bile duct-ligated dogs and swine. The Journal of pharmacology and experimental therapeutics. 1984 Mar; 228(3):560-6. doi: . [PMID: 6423807]
  • M R Dobrinska, D E Furst, T Spiegel, W C Vincek, R Tompkins, D E Duggan, R O Davies, H E Paulus. Biliary secretion of sulindac and metabolites in man. Biopharmaceutics & drug disposition. 1983 Oct; 4(4):347-58. doi: 10.1002/bdd.2510040407. [PMID: 6661513]
  • S Kitamura, K Tatsumi. In vitro metabolism of sulindac and sulindac sulfide: enzymatic formation of sulfoxide and sulfone. Japanese journal of pharmacology. 1982 Oct; 32(5):833-8. doi: 10.1254/jjp.32.833. [PMID: 7176218]
  • B N Swanson, P Mojaverian, V K Boppana, M R Dudash. Effect of dimethyl sulfoxide on sulindac disposition in rats. Drug metabolism and disposition: the biological fate of chemicals. 1981 Nov; 9(6):499-502. doi: NULL. [PMID: 6120805]
  • S S Fan, T Y Shen. Membrane effects of antiinflammatory agents. 1. Interaction of sulindac and its metabolites with phospholipid membrane, a magnetic resonance study. Journal of medicinal chemistry. 1981 Oct; 24(10):1197-202. doi: 10.1021/jm00142a015. [PMID: 6276543]