N-Acetylglutamine (BioDeep_00000017822)
Secondary id: BioDeep_00000604292
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C7H12N2O4 (188.0797)
中文名称: N-乙酰-L-谷氨酰胺, 乙酰谷酰胺, N-乙酰-L-谷酰胺
谱图信息:
最多检出来源 Homo sapiens(feces) 9.56%
Last reviewed on 2024-08-26.
Cite this Page
N-Acetylglutamine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/n-acetylglutamine (retrieved
2025-05-05) (BioDeep RN: BioDeep_00000017822). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(=O)NC(CCC(=N)O)C(=O)O
InChI: InChI=1S/C7H12N2O4/c1-4(10)9-5(7(12)13)2-3-6(8)11/h5H,2-3H2,1H3,(H2,8,11)(H,9,10)(H,12,13)
描述信息
N-Acetyl-L-glutamine (NAcGln) or N-Acetylglutamine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylglutamine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylglutamine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-glutamine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylglutamine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free glutamine can also occur. In particular, N-Acetylglutamine can be biosynthesized from L-glutamine and acetyl-CoA by the enzyme glutamine N-acyltransferase (EC 2.3.1.68). Excessive amounts N-acetyl amino acids including N-acetylglutamine (as well as N-acetylglycine, N-acetylserine, N-acetylmethionine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylglutamine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-acetylglutamine can be used for parenteral nutrition as a source of glutamine since glutamine is too unstable whereas N-acetylglutamine is very stable. In patients treated with aminoglycosides and/or glycopeptides, an elevation of N-acetylglutamine in urine suggests renal tubular injury.
N-Acetylglutamine (GIcNAc) is a modified amino acid (an acetylated analogue of glutamine), a metabolite present in normal human urine. The decomposition products of GIcNAc have been identified by NMR and HPLC-MS as N-acetyl-L-glutamic acid, N-(2,6-dioxo-3-piperidinyl) acetamide, pyroglutamic acid, glutamic acid, and glutamine. GIcNAc is used for parenteral nutrition as a source of glutamine, since glutamine is too unstable, but GIcNAc is very stable. In patients treated with aminoglycosides and/or glycopeptides, elevation GIcNAc in urine suggests renal tubular injury. High amounts of N-acetylated amino acids (i.e.: N-Acetylglutamine) were detected patient with aminoacylase I deficiency (EC 3.5.1.14, a homodimeric zinc-binding metalloenzyme located in the cytosol), a novel inborn error of metabolism. (PMID: 15331932, 11312773, 7952062, 2569664, 16274666) [HMDB]
C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
Aceglutamide (α-N-Acetyl-L-glutamine) is a psychostimulant and nootropic, used to improve memory and concentration[1].
同义名列表
73 个代谢物同义名
(2S)-2-Acetamido-5-amino-5-oxopentanoic acid; (2S)-4-Carbamoyl-2-acetamidobutanoic acid; 4-carbamoyl-2-acetamidobutanoic acid; alpha-N-Acetyl-L-glutamine; N~2~-acetyl-L-glutamine; Α-N-acetyl-L-glutamine; L-N2-Acetyl-glutamine; N2-Acetyl-L-glutamine; L-N2-Acetylglutamine; N-Acetyl-L-glutamine; N2-Acetylglutamine; N-Acetylglutamine; Acetylglutamine; Aceglutamide; NAcGln; alpha-N-Acetyl-L-glutamine;N2-Acetylglutamine; N-Acetylglutamine; Glutamine, N2-acetyl-, L- (8CI); N(2)-acetylglutamine; -N-Acetyl-L-glutamine;N2-Acetylglutamine; .alpha.-N-Acetyl-L-glutamine; (2S)-2-(acetylamino)-5-amino-5-oxopentanoic acid; (2S)-2-acetamido-5-azanyl-5-oxidanylidene-pentanoic acid; (S)-2-Acetamido-5-amino-5-oxopentanoic acid; |A-N-Acetyl-L-glutamine; 01J18G9G97; Ac-Gln-OH; Ac-L-Gln-OH; Aceglutamid; Aceglutamida; Aceglutamida (INN-Spanish); Aceglutamida [INN-Spanish]; Aceglutamide (INN); ACEGLUTAMIDE (MART.); Aceglutamide [INN]; ACEGLUTAMIDE [MART.]; ACEGLUTAMIDE [MI]; ACEGLUTAMIDE [WHO-DD]; aceglutamide, aluminum (3:1) salt; Aceglutamidum; Aceglutamidum (INN-Latin); Aceglutamidum [INN-Latin]; acetyl glutamine; ACETYL GLUTAMINE [INCI]; acetyl-l-glutamine; ACUTIL S; Acutil-S; F1F2182D-A535-4374-AF94-9D900EC2161E; Glutamine, N-acetyl-; Glutamine, N2-acetyl-, L-; Glutamine, N2-acetyl-, L-(8CI); L-2-Acetamidoglutaramic acid; L-Glutamine, N-acetyl-; L-Glutamine, N2-acetyl-; N- alpha -Acetyl-L-glutamine; N-.alpha.-Acetyl-L-glutamine; N-alpha-Acetyl-L-glutamine; N(sup2)-Acetyl-L-glutamine; Nalpha-Acetyl-L-glutamine; NEURAMINA; NLQ; NN(2)-acetyl-L-glutamine; PENTAKIS(N(SUP 2)-ACETYL-L-GLUTAMINATO); Tox21_113393; Tox21_113393_1; UNII-01J18G9G97; 10B6E98F-2CB8-4D96-80D6-1CDC5541D3B2; 2-(acetylamino)-5-amino-5-oxopentanoic acid; 2-acetamido-5-amino-5-oxopentanoic acid; 4-carbamoyl-2-acetamidobutanoicacid; Ac-D-Gln-OH; Acetyl-D-glutamine; ALPHA-N-ACETYL-GLUTAMINE
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:21553
- ChEBI: CHEBI:73685
- PubChem: 182230
- PubChem: 25561
- HMDB: HMDB0006029
- DrugBank: DB04167
- ChEMBL: CHEMBL3184604
- ChEMBL: CHEMBL1234757
- Wikipedia: Aceglutamide
- foodb: FDB023808
- chemspider: 158492
- CAS: 2490-97-3
- PMhub: MS000000420
- RefMet: N-Acetylglutamine
- medchemexpress: HY-B1065
- MeSH: aceglutamide
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
5 个相关的物种来源信息
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens: -
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Jingjing Zhang, Rui Zhou, Changpei Xiang, Fangfang Fan, Jinhuan Gao, Yi Zhang, Shihuan Tang, Haiyu Xu, Hongjun Yang. Enhanced thioredoxin, glutathione and Nrf2 antioxidant systems by safflower extract and aceglutamide attenuate cerebral ischaemia/reperfusion injury.
Journal of cellular and molecular medicine.
2020 05; 24(9):4967-4980. doi:
10.1111/jcmm.15099
. [PMID: 32266795] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Lei Gao, Yunwen Xue, Zunjian Zhang, Yuan Tian. Enantioseparation of N-acetyl-glutamine enantiomers by LC-MS/MS and its application to a plasma protein binding study.
Biomedical chromatography : BMC.
2019 Sep; 33(9):e4559. doi:
10.1002/bmc.4559
. [PMID: 31016738] - D P K Ng, A Salim, Y Liu, L Zou, F G Xu, S Huang, H Leong, C N Ong. A metabolomic study of low estimated GFR in non-proteinuric type 2 diabetes mellitus.
Diabetologia.
2012 Feb; 55(2):499-508. doi:
10.1007/s00125-011-2339-6
. [PMID: 22038517] - Joana Carrola, Cláudia M Rocha, António S Barros, Ana M Gil, Brian J Goodfellow, Isabel M Carreira, João Bernardo, Ana Gomes, Vitor Sousa, Lina Carvalho, Iola F Duarte. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine.
Journal of proteome research.
2011 Jan; 10(1):221-30. doi:
10.1021/pr100899x
. [PMID: 21058631] - Blair U Bradford, Thomas M O'Connell, Jun Han, Oksana Kosyk, Svitlana Shymonyak, Pamela K Ross, Jason Winnike, Hiroshi Kono, Ivan Rusyn. Metabolomic profiling of a modified alcohol liquid diet model for liver injury in the mouse uncovers new markers of disease.
Toxicology and applied pharmacology.
2008 Oct; 232(2):236-43. doi:
10.1016/j.taap.2008.06.022
. [PMID: 18674555] - R N Van Coster, E A Gerlo, T G Giardina, U F Engelke, J E Smet, C M De Praeter, V A Meersschaut, L J De Meirleir, S H Seneca, B Devreese, J G Leroy, S Herga, J P Perrier, R A Wevers, W Lissens. Aminoacylase I deficiency: a novel inborn error of metabolism.
Biochemical and biophysical research communications.
2005 Dec; 338(3):1322-6. doi:
10.1016/j.bbrc.2005.10.126
. [PMID: 16274666] - S X Racine, P Le Toumelin, F Adnet, Y Cohen, M Cupa, E Hantz, L Le Moyec. N-acetyl functions and acetate detected by nuclear magnetic resonance spectroscopy of urine to detect renal dysfunction following aminoglycoside and/or glycopeptide antibiotic therapy.
Nephron. Physiology.
2004; 97(4):p53-7. doi:
10.1159/000079179
. [PMID: 15331932] - K Sugahara, J Zhang, H Kodama. Liquid chromatographic-mass spectrometric analysis of N-acetylamino acids in human urine.
Journal of chromatography. B, Biomedical applications.
1994 Jul; 657(1):15-21. doi:
10.1016/0378-4347(94)80064-2
. [PMID: 7952062] - M C Gouttebel, C Astre, D Briand, B Saint-Aubert, P M Girardot, H Joyeux. Influence of N-acetylglutamine or glutamine infusion on plasma amino acid concentrations during the early phase of small-bowel adaptation in the dog.
JPEN. Journal of parenteral and enteral nutrition.
1992 Mar; 16(2):117-21. doi:
10.1177/0148607192016002117
. [PMID: 1556804] - Y Chen. Clinical research on treating senile dementia by combining acupuncture with acupoint-injection.
Acupuncture & electro-therapeutics research.
1992; 17(2):61-73. doi:
10.3727/036012992816357800
. [PMID: 1353652] - I Magnusson, R Kihlberg, A Alvestrand, J Wernerman, L Ekman, J Wahren. Utilization of intravenously administered N-acetyl-L-glutamine in humans.
Metabolism: clinical and experimental.
1989 Aug; 38(8 Suppl 1):82-8. doi:
10.1016/0026-0495(89)90148-0
. [PMID: 2569664]