Camostat (BioDeep_00000176970)

   

human metabolite blood metabolite


代谢物信息卡片


[4-[2-[2-(dimethylamino)-2-oxoethoxy]-2-oxoethyl]phenyl] 4-(diaminomethylideneamino)benzoate

化学式: C20H22N4O5 (398.1590122)
中文名称: 卡莫司他
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CN(C)C(=O)COC(=O)CC1=CC=C(C=C1)OC(=O)C2=CC=C(C=C2)N=C(N)N
InChI: InChI=1S/C20H22N4O5/c1-24(2)17(25)12-28-18(26)11-13-3-9-16(10-4-13)29-19(27)14-5-7-15(8-6-14)23-20(21)22/h3-10H,11-12H2,1-2H3,(H4,21,22,23)

描述信息

COVID info from Guide to PHARMACOLOGY, clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map
B - Blood and blood forming organs > B02 - Antihemorrhagics > B02A - Antifibrinolytics > B02AB - Proteinase inhibitors
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors
C471 - Enzyme Inhibitor > C783 - Protease Inhibitor
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

20 个代谢物同义名

[4-[2-[2-(dimethylamino)-2-oxoethoxy]-2-oxoethyl]phenyl] 4-(diaminomethylideneamino)benzoate; N,N-Dimethylcarbamoylmethyl-4-(4-guanidinobenzoyloxy)phenylacetate methanesulfonate; 4-{2-[(dimethylcarbamoyl)methoxy]-2-oxoethyl}phenyl 4-carbamimidamidobenzoic acid; 4-{2-[(dimethylcarbamoyl)methoxy]-2-oxoethyl}phenyl 4-carbamimidamidobenzoate; N,N-Dimethylcarbamoylmethyl 4-(4-guanidinobenzoyloxy)phenylacetic acid; N,N-Dimethylcarbamoylmethyl 4-(4-guanidinobenzoyloxy)phenylacetate; CAMOSTAT mesilic acid; Ethanesulphonic acid; Ethanesulfonic acid; Camostate-mesilate; CAMOSTAT mesilATE; Ethanesulphonate; Camostatum; Camostate; FOY S 980; Camostat; Foy-305; FOY 305; Foypan; Foipan



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Aswad Khadilkar, Zoie L Bunch, Jessica Wagoner, Vandana Ravindran, Jessica M Oda, Warren S Vidar, Trevor N Clark, Preston K Manwill, Daniel A Todd, Sarah A Barr, Lauren K Olinger, Susan L Fink, Wendy K Strangman, Roger G Linington, John B MacMillan, Nadja B Cech, Stephen J Polyak. Modulation of in Vitro SARS-CoV-2 Infection by Stephania tetrandra and Its Alkaloid Constituents. Journal of natural products. 2023 Apr; 86(4):1061-1073. doi: 10.1021/acs.jnatprod.3c00159. [PMID: 37043739]
  • Hanjun Zhao, Lu Lu, Zheng Peng, Lin-Lei Chen, Xinjin Meng, Chuyuan Zhang, Jonathan Daniel Ip, Wan-Mui Chan, Allen Wing-Ho Chu, Kwok-Hung Chan, Dong-Yan Jin, Honglin Chen, Kwok-Yung Yuen, Kelvin Kai-Wang To. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerging microbes & infections. 2022 Dec; 11(1):277-283. doi: 10.1080/22221751.2021.2023329. [PMID: 34951565]
  • Tong Wu, Seyed A Rabi, William A Michaud, David Becerra, Sarah E Gilpin, Mari Mino-Kenudson, Harald C Ott. Protease inhibitor Camostat Mesyalte blocks wild type SARS-CoV-2 and D614G viral entry in human engineered miniature lungs. Biomaterials. 2022 06; 285(?):121509. doi: 10.1016/j.biomaterials.2022.121509. [PMID: 35533440]
  • Yuri Kosinsky, Kirill Peskov, Donald R Stanski, Diana Wetmore, Joseph Vinetz. Semi-Mechanistic Pharmacokinetic-Pharmacodynamic Model of Camostat Mesylate-Predicted Efficacy against SARS-CoV-2 in COVID-19. Microbiology spectrum. 2022 04; 10(2):e0216721. doi: 10.1128/spectrum.02167-21. [PMID: 35412356]
  • Wenrui Guo, Linsey M Porter, Thomas Wm Crozier, Matthew Coates, Akhilesh Jha, Mikel McKie, James A Nathan, Paul J Lehner, Edward Jd Greenwood, Frank McCaughan. Topical TMPRSS2 inhibition prevents SARS-CoV-2 infection in differentiated human airway cultures. Life science alliance. 2022 04; 5(4):. doi: 10.26508/lsa.202101116. [PMID: 35110354]
  • Heidi Ledford. Hundreds of COVID trials could provide a deluge of new drugs. Nature. 2022 03; 603(7899):25-27. doi: 10.1038/d41586-022-00562-0. [PMID: 35233098]
  • Palayakotai R Raghavan. Metadichol®: A Novel Nanolipid Formulation That Inhibits SARS-CoV-2 and a Multitude of Pathological Viruses In Vitro. BioMed research international. 2022; 2022(?):1558860. doi: 10.1155/2022/1558860. [PMID: 35039793]
  • Sadia Z Shah, Alan H Bryce. On the Road Back to Normalcy: Following Science Over Noise in SARS-CoV-2. Mayo Clinic proceedings. 2021 11; 96(11):2736-2742. doi: 10.1016/j.mayocp.2021.09.011. [PMID: 34736604]
  • Matthew Mahoney, Vishnu C Damalanka, Michael A Tartell, Dong Hee Chung, André Luiz Lourenço, Dustin Pwee, Anne E Mayer Bridwell, Markus Hoffmann, Jorine Voss, Partha Karmakar, Nurit P Azouz, Andrea M Klingler, Paul W Rothlauf, Cassandra E Thompson, Melody Lee, Lidija Klampfer, Christina L Stallings, Marc E Rothenberg, Stefan Pöhlmann, Sean P J Whelan, Anthony J O'Donoghue, Charles S Craik, James W Janetka. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proceedings of the National Academy of Sciences of the United States of America. 2021 10; 118(43):. doi: 10.1073/pnas.2108728118. [PMID: 34635581]
  • Ko Sato, Hideki Hayashi, Yoshitaka Shimotai, Mutsuo Yamaya, Seiji Hongo, Kazuyoshi Kawakami, Yoko Matsuzaki, Hidekazu Nishimura. TMPRSS2 Activates Hemagglutinin-Esterase Glycoprotein of Influenza C Virus. Journal of virology. 2021 10; 95(21):e0129621. doi: 10.1128/jvi.01296-21. [PMID: 34406864]
  • Alex J B Kreutzberger, Anwesha Sanyal, Ravi Ojha, Jesse D Pyle, Olli Vapalahti, Giuseppe Balistreri, Tom Kirchhausen. Synergistic Block of SARS-CoV-2 Infection by Combined Drug Inhibition of the Host Entry Factors PIKfyve Kinase and TMPRSS2 Protease. Journal of virology. 2021 10; 95(21):e0097521. doi: 10.1128/jvi.00975-21. [PMID: 34406858]
  • Lambert K Sørensen, Jørgen B Hasselstrøm, Jesper D Gunst, Ole S Søgaard, Mads Kjolby. Determination of camostat and its metabolites in human plasma - Preservation of samples and quantification by a validated UHPLC-MS/MS method. Clinical biochemistry. 2021 Oct; 96(?):56-62. doi: 10.1016/j.clinbiochem.2021.07.007. [PMID: 34252447]
  • Gaohui Sun, Yaqun Sui, Yang Zhou, Junlin Ya, Cai Yuan, Longguang Jiang, Mingdong Huang. Structural Basis of Covalent Inhibitory Mechanism of TMPRSS2-Related Serine Proteases by Camostat. Journal of virology. 2021 09; 95(19):e0086121. doi: 10.1128/jvi.00861-21. [PMID: 34160253]
  • Junsaku Kitagawa, Hayato Arai, Hiroyuki Iida, Jiro Mukai, Kenji Furukawa, Seitaro Ohtsu, Susumu Nakade, Tomohiro Hikima, Miwa Haranaka, Naoto Uemura. A phase I study of high dose camostat mesylate in healthy adults provides a rationale to repurpose the TMPRSS2 inhibitor for the treatment of COVID-19. Clinical and translational science. 2021 09; 14(5):1967-1976. doi: 10.1111/cts.13052. [PMID: 33982445]
  • Kun Li, David K Meyerholz, Jennifer A Bartlett, Paul B McCray. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19. mBio. 2021 08; 12(4):e0097021. doi: 10.1128/mbio.00970-21. [PMID: 34340553]
  • Sarah Halford, Susan Wan, Ilaria Dragoni, Julie Silvester, Bobojon Nazarov, Daniel Anthony, Suzie Anthony, Emma Ladds, John Norrie, Kevin Dhaliwal. SPIKE-1: A Randomised Phase II/III trial in a community setting, assessing use of camostat in reducing the clinical progression of COVID-19 by blocking SARS-CoV-2 Spike protein-initiated membrane fusion. Trials. 2021 Aug; 22(1):550. doi: 10.1186/s13063-021-05461-9. [PMID: 34412682]
  • Teruhiko Mizumoto, Yutaka Kakizoe, Terumasa Nakagawa, Yasunobu Iwata, Yoshikazu Miyasato, Kohei Uchimura, Masataka Adachi, Qinyuan Deng, Manabu Hayata, Jun Morinaga, Taku Miyoshi, Yuichiro Izumi, Takashige Kuwabara, Yoshiki Sakai, Kimio Tomita, Kenichiro Kitamura, Masashi Mukoyama. A serine protease inhibitor camostat mesilate prevents podocyte apoptosis and attenuates podocyte injury in metabolic syndrome model rats. Journal of pharmacological sciences. 2021 Aug; 146(4):192-199. doi: 10.1016/j.jphs.2021.04.003. [PMID: 34116732]
  • Markus Hoffmann, Heike Hofmann-Winkler, Nadine Krüger, Amy Kempf, Inga Nehlmeier, Luise Graichen, Prerna Arora, Anzhalika Sidarovich, Anna-Sophie Moldenhauer, Martin S Winkler, Sebastian Schulz, Hans-Martin Jäck, Metodi V Stankov, Georg M N Behrens, Stefan Pöhlmann. SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell reports. 2021 07; 36(3):109415. doi: 10.1016/j.celrep.2021.109415. [PMID: 34270919]
  • Xiaoqiang Huang, Robin Pearce, Gilbert S Omenn, Yang Zhang. Identification of 13 Guanidinobenzoyl- or Aminidinobenzoyl-Containing Drugs to Potentially Inhibit TMPRSS2 for COVID-19 Treatment. International journal of molecular sciences. 2021 Jun; 22(13):. doi: 10.3390/ijms22137060. [PMID: 34209110]
  • Jaganathan Ramakrishnan, Saravanan Kandasamy, Ancy Iruthayaraj, Sivanandam Magudeeswaran, Kalaiarasi Chinnasamy, Kumaradhas Poomani. Strong Binding of Leupeptin with TMPRSS2 Protease May Be an Alternative to Camostat and Nafamostat for SARS-CoV-2 Repurposed Drug: Evaluation from Molecular Docking and Molecular Dynamics Simulations. Applied biochemistry and biotechnology. 2021 Jun; 193(6):1909-1923. doi: 10.1007/s12010-020-03475-8. [PMID: 33512650]
  • Yasser Sakr, Hatim Bensasi, Ahmed Taha, Michael Bauer, Khaled Ismail. Camostat mesylate therapy in critically ill patients with COVID-19 pneumonia. Intensive care medicine. 2021 06; 47(6):707-709. doi: 10.1007/s00134-021-06395-1. [PMID: 33846824]
  • Verena Keitel, Björn Jensen, Torsten Feldt, Johannes C Fischer, Johannes G Bode, Christiane Matuschek, Edwin Bölke, Wilfried Budach, Christian Plettenberg, Kathrin Scheckenbach, Detlef Kindgen-Milles, Jörg Timm, Lisa Müller, Henrike Kolbe, Andreas Stöhr, Christian Calles, Andreas Hippe, Pablo Verde, Christoph D Spinner, Jochen Schneider, Timo Wolf, Winfried V Kern, Jacob Nattermann, Alexander Zoufaly, Christian Ohmann, Tom Luedde. Reconvalescent plasma/camostat mesylate in early SARS-CoV-2 Q-PCR positive high-risk individuals (RES-Q-HR): a structured summary of a study protocol for a randomized controlled trial. Trials. 2021 May; 22(1):343. doi: 10.1186/s13063-021-05181-0. [PMID: 34001215]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Johanna Weiss, Gzona Bajraktari-Sylejmani, Walter Emil Haefeli. Low risk of the TMPRSS2 inhibitor camostat mesylate and its metabolite GBPA to act as perpetrators of drug-drug interactions. Chemico-biological interactions. 2021 Apr; 338(?):109428. doi: 10.1016/j.cbi.2021.109428. [PMID: 33647240]
  • Markus Hoffmann, Heike Hofmann-Winkler, Joan C Smith, Nadine Krüger, Prerna Arora, Lambert K Sørensen, Ole S Søgaard, Jørgen Bo Hasselstrøm, Michael Winkler, Tim Hempel, Lluís Raich, Simon Olsson, Olga Danov, Danny Jonigk, Takashi Yamazoe, Katsura Yamatsuta, Hirotaka Mizuno, Stephan Ludwig, Frank Noé, Mads Kjolby, Armin Braun, Jason M Sheltzer, Stefan Pöhlmann. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine. 2021 Mar; 65(?):103255. doi: 10.1016/j.ebiom.2021.103255. [PMID: 33676899]
  • Seyed Fazel Nabavi, Solomon Habtemariam, Ioana Berindan-Neagoe, Cosmin Andrei Cismaru, Dedmer Schaafsma, Saeid Ghavami, Maciej Banach, Safieh Aghaabdollahian, Seyed Mohammad Nabavi. Rationale for Effective Prophylaxis Against COVID-19 Through Simultaneous Blockade of Both Endosomal and Non-Endosomal SARS-CoV-2 Entry into Host Cell. Clinical and translational science. 2021 03; 14(2):431-433. doi: 10.1111/cts.12949. [PMID: 33406317]
  • Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Oliver Keminer, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek. A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection. Scientific data. 2021 02; 8(1):70. doi: 10.1038/s41597-021-00848-4. [PMID: 33637768]
  • Peter Breining, Anne Lier Frølund, Jesper Falkesgaard Højen, Jesper Damsgaard Gunst, Nina B Staerke, Eva Saedder, Manuel Cases-Thomas, Paul Little, Lars Peter Nielsen, Ole S Søgaard, Mads Kjolby. Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety. Basic & clinical pharmacology & toxicology. 2021 Feb; 128(2):204-212. doi: 10.1111/bcpt.13533. [PMID: 33176395]
  • Alexander Simonis, Sebastian J Theobald, Gerd Fätkenheuer, Jan Rybniker, Jakob J Malin. A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2. EMBO molecular medicine. 2021 01; 13(1):e13105. doi: 10.15252/emmm.202013105. [PMID: 33015938]
  • Himanshu G Toor, Devjani I Banerjee, Soumya Lipsa Rath, Siddhi A Darji. Computational drug re-purposing targeting the spike glycoprotein of SARS-CoV-2 as an effective strategy to neutralize COVID-19. European journal of pharmacology. 2021 Jan; 890(?):173720. doi: 10.1016/j.ejphar.2020.173720. [PMID: 33160938]
  • Namrta Choudhry, Xin Zhao, Dan Xu, Mark Zanin, Weisan Chen, Zifeng Yang, Jianxin Chen. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Journal of medicinal chemistry. 2020 11; 63(22):13205-13227. doi: 10.1021/acs.jmedchem.0c00626. [PMID: 32845145]
  • Yoshiharu Uno. Camostat mesilate therapy for COVID-19. Internal and emergency medicine. 2020 Nov; 15(8):1577-1578. doi: 10.1007/s11739-020-02345-9. [PMID: 32347443]
  • Safaa M Kishk, Rania M Kishk, Asmaa S A Yassen, Mohamed S Nafie, Nader A Nemr, Gamal ElMasry, Salim Al-Rejaie, Claire Simons. Molecular Insights into Human Transmembrane Protease Serine-2 (TMPS2) Inhibitors against SARS-CoV2: Homology Modelling, Molecular Dynamics, and Docking Studies. Molecules (Basel, Switzerland). 2020 Oct; 25(21):. doi: 10.3390/molecules25215007. [PMID: 33137894]
  • Richard A Giovane, Shadi Rezai, Ellen Cleland, Cassandra E Henderson. Current pharmacological modalities for management of novel coronavirus disease 2019 (COVID-19) and the rationale for their utilization: A review. Reviews in medical virology. 2020 09; 30(5):e2136. doi: 10.1002/rmv.2136. [PMID: 32644275]
  • Veronica Mollica, Alessandro Rizzo, Francesco Massari. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future oncology (London, England). 2020 Sep; 16(27):2029-2033. doi: 10.2217/fon-2020-0571. [PMID: 32658591]
  • George Mihai Nitulescu, Horia Paunescu, Sterghios A Moschos, Dimitrios Petrakis, Georgiana Nitulescu, George Nicolae Daniel Ion, Demetrios A Spandidos, Taxiarchis Konstantinos Nikolouzakis, Nikolaos Drakoulis, Aristidis Tsatsakis. Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review). International journal of molecular medicine. 2020 Aug; 46(2):467-488. doi: 10.3892/ijmm.2020.4608. [PMID: 32468014]
  • Hong Zhou, Yan Fang, Tao Xu, Wei-Jian Ni, Ai-Zong Shen, Xiao-Ming Meng. Potential therapeutic targets and promising drugs for combating SARS-CoV-2. British journal of pharmacology. 2020 07; 177(14):3147-3161. doi: 10.1111/bph.15092. [PMID: 32368792]
  • Mizuki Yamamoto, Maki Kiso, Yuko Sakai-Tagawa, Kiyoko Iwatsuki-Horimoto, Masaki Imai, Makoto Takeda, Noriko Kinoshita, Norio Ohmagari, Jin Gohda, Kentaro Semba, Zene Matsuda, Yasushi Kawaguchi, Yoshihiro Kawaoka, Jun-Ichiro Inoue. The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses. 2020 06; 12(6):. doi: 10.3390/v12060629. [PMID: 32532094]
  • Konrad H Stopsack, Lorelei A Mucci, Emmanuel S Antonarakis, Peter S Nelson, Philip W Kantoff. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention?. Cancer discovery. 2020 06; 10(6):779-782. doi: 10.1158/2159-8290.cd-20-0451. [PMID: 32276929]
  • Sonia de Castro, Tiziana Ginex, Evelien Vanderlinden, Manon Laporte, Annelies Stevaert, José Cumella, Federico Gago, María José Camarasa, F Javier Luque, Lieve Naesens, Sonsoles Velazquez. N-benzyl 4,4-disubstituted piperidines as a potent class of influenza H1N1 virus inhibitors showing a novel mechanism of hemagglutinin fusion peptide interaction. European journal of medicinal chemistry. 2020 May; 194(?):112223. doi: 10.1016/j.ejmech.2020.112223. [PMID: 32220685]
  • Noor Rahman, Zarrin Basharat, Muhammad Yousuf, Giuseppe Castaldo, Luca Rastrelli, Haroon Khan. Virtual Screening of Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2). Molecules (Basel, Switzerland). 2020 May; 25(10):. doi: 10.3390/molecules25102271. [PMID: 32408547]
  • Mutsuo Yamaya, Hidekazu Nishimura, Xue Deng, Akiko Kikuchi, Ryoichi Nagatomi. Protease Inhibitors: Candidate Drugs to Inhibit Severe Acute Respiratory Syndrome Coronavirus 2 Replication. The Tohoku journal of experimental medicine. 2020 05; 251(1):27-30. doi: 10.1620/tjem.251.27. [PMID: 32448818]
  • Sarah E Henrickson. Learning from our immunological history: What can SARS-CoV teach us about SARS-CoV-2?. Science immunology. 2020 04; 5(46):. doi: 10.1126/sciimmunol.abb8618. [PMID: 32245885]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Kamal Albarazanji, Matthew Jennis, Cassandre R Cavanaugh, Wensheng Lang, Bhanu Singh, James C Lanter, James M Lenhard, Pamela J Hornby. Intestinal serine protease inhibition increases FGF21 and improves metabolism in obese mice. American journal of physiology. Gastrointestinal and liver physiology. 2019 05; 316(5):G653-G667. doi: 10.1152/ajpgi.00404.2018. [PMID: 30920846]
  • Mizuki Yamamoto, Shutoku Matsuyama, Xiao Li, Makoto Takeda, Yasushi Kawaguchi, Jun-Ichiro Inoue, Zene Matsuda. Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrobial agents and chemotherapy. 2016 11; 60(11):6532-6539. doi: 10.1128/aac.01043-16. [PMID: 27550352]
  • Yuki Narita, Miki Ueda, Kohei Uchimura, Yutaka Kakizoe, Yoshikazu Miyasato, Teruhiko Mizumoto, Jun Morinaga, Manabu Hayata, Terumasa Nakagawa, Masataka Adachi, Taku Miyoshi, Yoshiki Sakai, Daisuke Kadowaki, Sumio Hirata, Masashi Mukoyama, Kenichiro Kitamura. Combination therapy with renin-angiotensin-aldosterone system inhibitor telmisartan and serine protease inhibitor camostat mesilate provides further renoprotection in a rat chronic kidney disease model. Journal of pharmacological sciences. 2016 Feb; 130(2):110-6. doi: 10.1016/j.jphs.2016.01.003. [PMID: 26887332]
  • Mutsuo Yamaya, Yoshitaka Shimotai, Yukimasa Hatachi, Nadine Lusamba Kalonji, Yukiko Tando, Yasuo Kitajima, Kaori Matsuo, Hiroshi Kubo, Ryoichi Nagatomi, Seiji Hongo, Morio Homma, Hidekazu Nishimura. The serine protease inhibitor camostat inhibits influenza virus replication and cytokine production in primary cultures of human tracheal epithelial cells. Pulmonary pharmacology & therapeutics. 2015 Aug; 33(?):66-74. doi: 10.1016/j.pupt.2015.07.001. [PMID: 26166259]
  • Francisco M Franco, Darin E Jones, Peter K W Harris, Zhenfu Han, Scott A Wildman, Cassie M Jarvis, James W Janetka. Structure-based discovery of small molecule hepsin and HGFA protease inhibitors: Evaluation of potency and selectivity derived from distinct binding pockets. Bioorganic & medicinal chemistry. 2015 May; 23(10):2328-43. doi: 10.1016/j.bmc.2015.03.072. [PMID: 25882520]
  • Miki Ueda, Kohei Uchimura, Yuki Narita, Yoshikazu Miyasato, Teruhiko Mizumoto, Jun Morinaga, Manabu Hayata, Yutaka Kakizoe, Masataka Adachi, Taku Miyoshi, Naoki Shiraishi, Daisuke Kadowaki, Yoshiki Sakai, Masashi Mukoyama, Kenichiro Kitamura. The serine protease inhibitor camostat mesilate attenuates the progression of chronic kidney disease through its antioxidant effects. Nephron. 2015; 129(3):223-32. doi: 10.1159/000375308. [PMID: 25766432]
  • Juhui Zhao, Zongyan Wang, Baicang Zou, Yahua Song, Lei Dong. [Camostat mesilate, a protease inhibitor, inhibits visceral sensitivity and spinal c-fos expression in rats with acute restraint stress]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2014 Oct; 34(10):1546-50. doi: NULL. [PMID: 25345960]
  • Kazuya Shirato, Miyuki Kawase, Shutoku Matsuyama. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. Journal of virology. 2013 Dec; 87(23):12552-61. doi: 10.1128/jvi.01890-13. [PMID: 24027332]
  • Jun Morinaga, Yutaka Kakizoe, Taku Miyoshi, Tomoaki Onoue, Miki Ueda, Teruhiko Mizumoto, Rika Yamazoe, Kohei Uchimura, Manabu Hayata, Naoki Shiraishi, Masataka Adachi, Yoshiki Sakai, Kimio Tomita, Kenichiro Kitamura. The antifibrotic effect of a serine protease inhibitor in the kidney. American journal of physiology. Renal physiology. 2013 Jul; 305(2):F173-81. doi: 10.1152/ajprenal.00586.2012. [PMID: 23698112]
  • Manabu Hayata, Yutaka Kakizoe, Kohei Uchimura, Jun Morinaga, Rika Yamazoe, Teruhiko Mizumoto, Tomoaki Onoue, Miki Ueda, Naoki Shiraishi, Masataka Adachi, Taku Miyoshi, Yoshiki Sakai, Kimio Tomita, Kenichiro Kitamura. Effect of a serine protease inhibitor on the progression of chronic renal failure. American journal of physiology. Renal physiology. 2012 Oct; 303(8):F1126-35. doi: 10.1152/ajprenal.00706.2011. [PMID: 22832926]
  • Kohei Uchimura, Yutaka Kakizoe, Tomoaki Onoue, Manabu Hayata, Jun Morinaga, Rika Yamazoe, Miki Ueda, Teruhiko Mizumoto, Masataka Adachi, Taku Miyoshi, Naoki Shiraishi, Yoshiki Sakai, Kimio Tomita, Kenichiro Kitamura. In vivo contribution of serine proteases to the proteolytic activation of γENaC in aldosterone-infused rats. American journal of physiology. Renal physiology. 2012 Oct; 303(7):F939-43. doi: 10.1152/ajprenal.00705.2011. [PMID: 22832922]
  • Miyuki Kawase, Kazuya Shirato, Lia van der Hoek, Fumihiro Taguchi, Shutoku Matsuyama. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. Journal of virology. 2012 Jun; 86(12):6537-45. doi: 10.1128/jvi.00094-12. [PMID: 22496216]
  • Kenichiro Kitamura, Kimio Tomita. Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension. Clinical and experimental nephrology. 2012 Feb; 16(1):44-8. doi: 10.1007/s10157-011-0506-1. [PMID: 22038264]
  • Helga Engi, Nóra Gyémánt, Motohiro Ohkoshi, Leonard Amaral, Joseph Molnár. Modelling of tumour--host coexistence In vitro in the presence of serine protease inhibitors. In vivo (Athens, Greece). 2009 Sep; 23(5):711-5. doi: NULL. [PMID: 19779105]
  • Ai Maekawa, Yutaka Kakizoe, Taku Miyoshi, Naoki Wakida, Takehiro Ko, Naoki Shiraishi, Masataka Adachi, Kimio Tomita, Kenichiro Kitamura. Camostat mesilate inhibits prostasin activity and reduces blood pressure and renal injury in salt-sensitive hypertension. Journal of hypertension. 2009 Jan; 27(1):181-9. doi: 10.1097/hjh.0b013e328317a762. [PMID: 19145783]
  • Hsing-Pang Hsieh, John T-A Hsu. Strategies of development of antiviral agents directed against influenza virus replication. Current pharmaceutical design. 2007; 13(34):3531-42. doi: 10.2174/138161207782794248. [PMID: 18220789]
  • Shi-Bing Su, Yi-Qun Li, Hong-Yi Shen, Yoshiharu Motoo, Motoo Yoshiharu. [Effects of Chinese herbal medicines on spontaneous chronic pancreatitis in rats and the pathological relationships between formulas and syndromes]. Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine. 2006 Jul; 4(4):358-62. doi: 10.3736/jcim20060408. [PMID: 16834971]
  • Nobuo Ashizawa, Tomoyuki Hashimoto, Tatsuya Miyake, Toshihiro Shizuku, Tomonori Imaoka, Yoshikazu Kinoshita. Efficacy of camostat mesilate compared with famotidine for treatment of functional dyspepsia: is camostat mesilate effective?. Journal of gastroenterology and hepatology. 2006 Apr; 21(4):767-71. doi: 10.1111/j.1440-1746.2005.04041.x. [PMID: 16677167]
  • Jiahui Yin, Yasuhiro Noda, Norio Hazemoto, Toshihisa Yotsuyanagi. Distribution of protease inhibitors in lipid emulsions: gabexate mesilate and camostat mesilate. Chemical & pharmaceutical bulletin. 2005 Aug; 53(8):893-8. doi: 10.1248/cpb.53.893. [PMID: 16079515]
  • Dongmei Jia, Masashi Taguchi, Makoto Otsuki. Synthetic protease inhibitor camostat prevents and reverses dyslipidemia, insulin secretory defects, and histological abnormalities of the pancreas in genetically obese and diabetic rats. Metabolism: clinical and experimental. 2005 May; 54(5):619-27. doi: 10.1016/j.metabol.2004.12.005. [PMID: 15877292]
  • Dongmei Jia, Masashi Taguchi, Makoto Otsuki. Preventive and therapeutic effects of the protease inhibitor camostat on pancreatic fibrosis and atrophy in CCK-1 receptor-deficient rats. Pancreas. 2005 Jan; 30(1):54-61. doi: NULL. [PMID: 15632700]
  • Mitsuo Tashiro, Linda C Samuelson, Rodger A Liddle, John A Williams. Calcineurin mediates pancreatic growth in protease inhibitor-treated mice. American journal of physiology. Gastrointestinal and liver physiology. 2004 May; 286(5):G784-90. doi: 10.1152/ajpgi.00446.2003. [PMID: 14684381]
  • Mitsuyoshi Yamamoto, Munenori Otani, Dong-Mei Jia, Ken-Ichiro Fukumitsu, Hiroyuki Yoshikawa, Toshiharu Akiyama, Makoto Otsuki. Differential mechanism and site of action of CCK on the pancreatic secretion and growth in rats. American journal of physiology. Gastrointestinal and liver physiology. 2003 Oct; 285(4):G681-7. doi: 10.1152/ajpgi.00312.2002. [PMID: 12801885]
  • Joseph R Reeve, Gary M Green, Peter Chew, Viktor E Eysselein, David A Keire. CCK-58 is the only detectable endocrine form of cholecystokinin in rat. American journal of physiology. Gastrointestinal and liver physiology. 2003 Aug; 285(2):G255-65. doi: 10.1152/ajpgi.00523.2002. [PMID: 12686511]
  • Makoto Miyazaki, Susumu Nakade, Kazunori Iwanaga, Kazuhiro Morimoto, Masao Kakemi. Estimation of bioavailability of salmon calcitonin from the hypocalcemic effect in rats (II): effect of protease inhibitor on the pharmacokinetic-pharmacodynamic relationship after intranasal administration. Drug metabolism and pharmacokinetics. 2003; 18(6):358-64. doi: 10.2133/dmpk.18.358. [PMID: 15618756]
  • Norikazu Sato, Shinji Suzuki, Setsuko Kanai, Minoru Ohta, Atsuo Jimi, Tetsuo Noda, Souichi Takiguchi, Akihiro Funakoshi, Kyoko Miyasaka. Different effects of oral administration of synthetic trypsin inhibitor on the pancreas between cholecystokinin-A receptor gene knockout mice and wild type mice. Japanese journal of pharmacology. 2002 Jul; 89(3):290-5. doi: 10.1254/jjp.89.290. [PMID: 12184735]
  • Hiroshi Mitsuoka, Erik B Kistler, Geert W Schmid-Schönbein. Protease inhibition in the intestinal lumen: attenuation of systemic inflammation and early indicators of multiple organ failure in shock. Shock (Augusta, Ga.). 2002 Mar; 17(3):205-9. doi: 10.1097/00024382-200203000-00008. [PMID: 11900339]
  • M Okuno, K Akita, H Moriwaki, N Kawada, K Ikeda, K Kaneda, Y Suzuki, S Kojima. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology. 2001 Jun; 120(7):1784-800. doi: 10.1053/gast.2001.24832. [PMID: 11375959]
  • C Yuasa, K Irimura, M Oda, K Fukui, T Oka. Oral administration of sepimostat mesilate prevents acute alcohol pancreatic injury in rats. The Journal of pharmacy and pharmacology. 1999 Jul; 51(7):867-71. doi: 10.1211/0022357991773087. [PMID: 10467964]
  • T Brzozowski, P C Konturek, S J Konturek, R Pajdo, D Drozdowicz, S Kwiecień, E G Hahn. Acceleration of ulcer healing by cholecystokinin (CCK): role of CCK-A receptors, somatostatin, nitric oxide and sensory nerves. Regulatory peptides. 1999 Jun; 82(1-3):19-33. doi: 10.1016/s0167-0115(99)00029-4. [PMID: 10458643]
  • Y Ikeda, H Ito, K Hashimoto. Effect of camostat mesilate on urinary protein excretion in three patients with advanced diabetic nephropathy. Journal of diabetes and its complications. 1999 Jan; 13(1):56-8. doi: 10.1016/s1056-8727(98)00016-6. [PMID: 10232711]
  • H Friess, J Kleeff, R Isenmann, P Malfertheiner, M W Büchler. Adaptation of the human pancreas to inhibition of luminal proteolytic activity. Gastroenterology. 1998 Aug; 115(2):388-96. doi: 10.1016/s0016-5085(98)70205-7. [PMID: 9679044]
  • H Tagami, S Abe, Y Yoshida, I Tanaka, C Kamei. Effect of methylcarbonylmethyl 2(S)-[4-(4-guanidino-benzoyloxy)phenyl] propionate methanesulfonate (TT-S24) on experimental pancreatitis in rats. Biological & pharmaceutical bulletin. 1998 Mar; 21(3):227-30. doi: 10.1248/bpb.21.227. [PMID: 9556150]
  • M Yamamoto, H Shirohara, M Otsuki. CCK-, secretin-, and cholinergic-independent pancreatic fluid hypersecretion in protease inhibitor-treated rats. The American journal of physiology. 1998 02; 274(2):G406-12. doi: 10.1152/ajpgi.1998.274.2.g406. [PMID: 9486196]
  • I Arai, Y Komatsu, Y Hirai, K Shingu, Y Ida, H Yamaura, T Yamamoto, Y Kuroiwa, K Sasaki, S Taguchi. Stimulative effects of saponin from kikyo-to, a Japanese herbal medicine, on pancreatic exocrine secretion of conscious rats. Planta medica. 1997 Oct; 63(5):419-24. doi: 10.1055/s-2006-957725. [PMID: 9342945]
  • M Sugiyama, Y Atomi, N Wada, A Kuroda, T Muto. Effect of oral protease inhibitor administration on gallbladder motility in patients with mild chronic pancreatitis. Journal of gastroenterology. 1997 Jun; 32(3):374-9. doi: 10.1007/bf02934496. [PMID: 9213253]
  • H Taniguchi, E Yomota, E Kume, T Shikano, T Endo, M Nagasaki. Effect of T-0632, a cholecystokininA receptor antagonist, on experimental acute pancreatitis. Japanese journal of pharmacology. 1997 Feb; 73(2):105-12. doi: 10.1254/jjp.73.105. [PMID: 9074944]
  • M Sugiyama, O Kobori, Y Atomi, N Wada, A Kuroda, T Muto. Effect of oral administration of protease inhibitor on pancreatic exocrine function in WBN/Kob rats with chronic pancreatitis. Pancreas. 1996 Jul; 13(1):71-9. doi: 10.1097/00006676-199607000-00010. [PMID: 8783337]
  • P W Thimister, W P Hopman, C E Sloots, G Rosenbusch, H L Willems, F J Trijbels, J B Jansen. Role of intraduodenal proteases in plasma cholecystokinin and pancreaticobiliary responses to protein and amino acids. Gastroenterology. 1996 Feb; 110(2):567-75. doi: 10.1053/gast.1996.v110.pm8566605. [PMID: 8566605]
  • K Kisfalvi, H Friess, M W Büchler, Z Tulassay, G Varga, M Papp. Age-dependent influence of octreotide on stimulated pancreatic growth in the postnatal period of rats. European journal of gastroenterology & hepatology. 1996 Jan; 8(1):69-74. doi: 10.1097/00042737-199601000-00013. [PMID: 8900912]
  • T Ikeda, T Hoshino. An inhibition of urinary albumin excretion by protease inhibitor in streptozotocin-diabetic rats. Nephron. 1996; 74(4):709-12. doi: 10.1159/000189479. [PMID: 8956306]
  • Y Ueda, K Nagasawa, H Tsukamoto, T Horiuchi, S Yoshizawa, T Tsuru, I Furugo, Y Niho. Urinary C4 excretion in systemic lupus erythematosus. Clinica chimica acta; international journal of clinical chemistry. 1995 Dec; 243(1):11-23. doi: 10.1016/0009-8981(95)06147-9. [PMID: 8747510]
  • J von Schönfeld, M Rünzi, H Goebell, M K Müller. Endocrine and exocrine pancreatic function after camostate-induced growth of the organ. Experientia. 1995 Jun; 51(6):556-60. doi: 10.1007/bf02128742. [PMID: 7607295]
  • K Nakamura, A Johmura, M Oda, Y Ino, H Uchiyama, H Ohtani, H Miyazaki, M Kurumi, Y Akizawa, T Oka. [Inhibitory effects of sepimostat mesilate (FUT-187) on the activities of trypsin-like serine proteases in vitro]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 1995 Mar; 115(3):201-12. doi: 10.1248/yakushi1947.115.3_201. [PMID: 7738778]
  • P W Thimister, W P Hopman, C E Sloots, G Rosenbusch, A Tangerman, H L Willems, C B Lamers, J B Jansen. Effect of bile salt binding or protease inactivation on plasma cholecystokinin and gallbladder responses to bombesin. Gastroenterology. 1994 Dec; 107(6):1627-35. doi: 10.1016/0016-5085(94)90801-x. [PMID: 7958672]
  • R Nustede, W E Schmidt, M Jäger, F Stöckmann, H Köhler, U R Fölsch, H J Peiper. Gastrin-releasing peptide and CCK after intraduodenal inhibition of proteases in dogs. International journal of pancreatology : official journal of the International Association of Pancreatology. 1994 Jun; 15(3):209-14. doi: 10.1007/bf02924196. [PMID: 7930782]
  • K Kisfalvi, G Varga, M Papp, F Hajnal, H Friess, M Büchler. Alcohol does not affect the trophic pancreatic effect of CCK and its plasma level in young rats. Pancreas. 1994 May; 9(3):399-401. doi: 10.1097/00006676-199405000-00023. [PMID: 8022768]
  • I Midgley, A J Hood, P Proctor, L F Chasseaud, S R Irons, K N Cheng, C J Brindley, R Bonn. Metabolic fate of 14C-camostat mesylate in man, rat and dog after intravenous administration. Xenobiotica; the fate of foreign compounds in biological systems. 1994 Jan; 24(1):79-92. doi: 10.3109/00498259409043223. [PMID: 8165824]
  • M Otsuki, S Tani, M Fujii, T Nakamura, Y Okabayashi, M Koide. Differential effects of proteinase inhibitor camostat on exocrine pancreas in fed and fasted rats. The American journal of physiology. 1993 Oct; 265(4 Pt 2):R896-901. doi: 10.1152/ajpregu.1993.265.4.r896. [PMID: 7694489]
  • A Schafmayer, R Nustede, H Köhler. Feedback regulation of exocrine pancreatic secretion in dogs. Pancreas. 1993 Sep; 8(5):627-31. doi: 10.1097/00006676-199309000-00016. [PMID: 8302801]
  • U Leonhardt, F Seidensticker, F Stöckmann, W Creutzfeldt. Effect of camostate administration for two weeks on experimental pancreatitis in mice and rats. Pancreas. 1993 Jan; 8(1):98-102. doi: 10.1097/00006676-199301000-00017. [PMID: 7678329]
  • T Hirano, T Manabe, H Printz, T Tobe. Cytotoxic effects of cyclosporin A on the exocrine pancreas in rats. Surgery, gynecology & obstetrics. 1992 Dec; 175(6):495-500. doi: NULL. [PMID: 1280373]
  • M Matsubara, Y Taguma, T Saito, K Yoshinaga. Anti-proteinuric and anti-coagulatory effects of camostat mesilate in azotemic diabetics. Nihon Jinzo Gakkai shi. 1992 Apr; 34(4):411-6. doi: NULL. [PMID: 1635286]
  • S Watanabe, T Takeuchi, W Y Chey. Mediation of trypsin inhibitor-induced pancreatic hypersecretion by secretin and cholecystokinin in rats. Gastroenterology. 1992 Feb; 102(2):621-8. doi: 10.1016/0016-5085(92)90111-b. [PMID: 1732130]
  • T Asami, S Ohsawa, S Tomisawa, K Hashimoto, S Toyabe, K Sakai. Glomerular deposition of alpha 2-macroglobulin in a child with steroid refractory nephrotic syndrome. Nephron. 1992; 61(2):211-3. doi: 10.1159/000186874. [PMID: 1378560]