Bis-(1,3-diethylthiobarbituric acid)trimethine oxonol (BioDeep_00000176712)

   

human metabolite blood metabolite


代谢物信息卡片


5-[3-(1,3-Diethyl-4,6-dioxo-2-sulphanylidene-1,3-diazinan-5-ylidene)prop-1-en-1-yl]-1,3-diethyl-2-sulphanylidene-1,3-diazinane-4,6-dione

化学式: C19H24N4O4S2 (436.1238904)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCN1C(=O)C(C=CC=C2C(=O)N(CC)C(=S)N(CC)C2=O)C(=O)N(CC)C1=S
InChI: InChI=1S/C19H24N4O4S2/c1-5-20-14(24)12(15(25)21(6-2)18(20)28)10-9-11-13-16(26)22(7-3)19(29)23(8-4)17(13)27/h9-12H,5-8H2,1-4H3



数据库引用编号

3 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • H Simonin, I M Bergaoui, J M Perrier-Cornet, P Gervais. Cryopreservation of Escherichia coli K12TG1: protection from the damaging effects of supercooling by freezing. Cryobiology. 2015 Apr; 70(2):115-21. doi: 10.1016/j.cryobiol.2014.12.006. [PMID: 25542651]
  • Jihoon Kim, Yasuhiko Sasaki, Wataru Yoshida, Natsuki Kobayashi, Anthony J Veloso, Kagan Kerman, Kazunori Ikebukuro, Koji Sode. Rapid cytotoxicity screening platform for amyloid inhibitors using a membrane-potential sensitive fluorescent probe. Analytical chemistry. 2013 Jan; 85(1):185-92. doi: 10.1021/ac302442q. [PMID: 23145996]
  • Chiara Callies, Peter Schön, Ivan Liashkovich, Christian Stock, Kristina Kusche-Vihrog, Johannes Fels, Alexandra S Sträter, Hans Oberleithner. Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy. Nanotechnology. 2009 Apr; 20(17):175104. doi: 10.1088/0957-4484/20/17/175104. [PMID: 19420584]
  • Adam B Weinglass, Andrew M Swensen, Jessica Liu, William Schmalhofer, Anu Thomas, Brande Williams, Leila Ross, Kristina Hashizume, Martin Kohler, Gregory J Kaczorowski, Maria L Garcia. A high-capacity membrane potential FRET-based assay for the sodium-coupled glucose co-transporter SGLT1. Assay and drug development technologies. 2008 Apr; 6(2):255-62. doi: 10.1089/adt.2008.125. [PMID: 18471079]
  • Yi Tang, Xiuqing Li, Jianjun He, Junge Lu, Zhenjun Diwu. Real-time and high throughput monitoring of cAMP in live cells using a fluorescent membrane potential-sensitive dye. Assay and drug development technologies. 2006 Aug; 4(4):461-71. doi: 10.1089/adt.2006.4.461. [PMID: 16945018]
  • Andrey Kuznetsov, Vytautas P Bindokas, Jeremy D Marks, Louis H Philipson. FRET-based voltage probes for confocal imaging: membrane potential oscillations throughout pancreatic islets. American journal of physiology. Cell physiology. 2005 Jul; 289(1):C224-9. doi: 10.1152/ajpcell.00004.2005. [PMID: 15758044]
  • Alexander S Tatikolov, Sílvia M B Costa. Complexation of polymethine dyes with human serum albumin: a spectroscopic study. Biophysical chemistry. 2004 Jan; 107(1):33-49. doi: 10.1016/s0301-4622(03)00218-7. [PMID: 14871599]
  • Olivier Ducoudret, Olivier Barbier, Michel Tauc, Marianne Fuchs, Philippe Poujeol. Characterization of Zn(2+) transport in Madin-Darby canine kidney cells. Biochimica et biophysica acta. 2003 Apr; 1611(1-2):171-9. doi: 10.1016/s0005-2736(03)00052-x. [PMID: 12659958]
  • Fabiana S Sguilla, Antonio C Tedesco, Lusiane M Bendhack. A membrane potential-sensitive dye for vascular smooth muscle cells assays. Biochemical and biophysical research communications. 2003 Jan; 301(1):113-8. doi: 10.1016/s0006-291x(02)02973-x. [PMID: 12535649]
  • Arijit Roy, Jinqing Li, Abu-Bakr Al-Mehdi, Anil Mokashi, Sukhamay Lahiri. Effect of acute hypoxia on glomus cell Em and psi m as measured by fluorescence imaging. Journal of applied physiology (Bethesda, Md. : 1985). 2002 Dec; 93(6):1987-98. doi: 10.1152/japplphysiol.00725.2001. [PMID: 12391083]
  • F Brasch, M Neckel, R Volkmann, G Schmidt, G Hellige, F Vetterlein. Mapping of capillary flow, cellular redox state, and resting membrane potential in hypoperfused rat myocardium. The American journal of physiology. 1999 11; 277(5):H2050-64. doi: 10.1152/ajpheart.1999.277.5.h2050. [PMID: 10564162]
  • V Dall'Asta, R Gatti, G Orlandini, P A Rossi, B M Rotoli, R Sala, O Bussolati, G C Gazzola. Membrane potential changes visualized in complete growth media through confocal laser scanning microscopy of bis-oxonol-loaded cells. Experimental cell research. 1997 Mar; 231(2):260-8. doi: 10.1006/excr.1996.3469. [PMID: 9087166]
  • A B al-Mehdi, H Shuman, A B Fisher. Oxidant generation with K(+)-induced depolarization in the isolated perfused lung. Free radical biology & medicine. 1997; 23(1):47-56. doi: 10.1016/s0891-5849(96)00574-6. [PMID: 9165296]
  • A G Cabado, M R Vieytes, L M Botana. Effect of ion composition on the changes in membrane potential induced with several stimuli in rat mast cells. Journal of cellular physiology. 1994 Feb; 158(2):309-16. doi: 10.1002/jcp.1041580213. [PMID: 7508944]
  • M K Tanner, S R Wellhausen, J B Klein. Flow cytometric analysis of altered mononuclear cell transmembrane potential induced by cyclosporin. Cytometry. 1993; 14(1):59-69. doi: 10.1002/cyto.990140111. [PMID: 8432204]
  • C Bronner, Y Landry. The use of the potential-sensitive fluorescent probe bisoxonol in mast cells. Biochimica et biophysica acta. 1991 Dec; 1070(2):321-31. doi: 10.1016/0005-2736(91)90073-h. [PMID: 1764450]
  • C Bronner, M Ratsimbason, F Pelen, Y Landry. The role of the sodium pump in the plasma membrane potential changes during mast cell activation. Agents and actions. 1991 May; 33(1-2):88-91. doi: 10.1007/bf01993134. [PMID: 1897448]
  • S Kitayama, H Ohtsuki, K Morita, T Dohi, A Tsujimoto. Bis-oxonol experiment on plasma membrane potentials of bovine adrenal chromaffin cells: depolarizing stimuli and their possible interaction. Neuroscience letters. 1990 Aug; 116(3):275-9. doi: 10.1016/0304-3940(90)90086-o. [PMID: 2243605]
  • C Pieri, R Recchioni, F Moroni, L Balkay, T Márián, L Trón, S Damjanovich. Ligand and voltage gated sodium channels may regulate electrogenic pump activity in human, mouse and rat lymphocytes. Biochemical and biophysical research communications. 1989 May; 160(3):999-1002. doi: 10.1016/s0006-291x(89)80100-7. [PMID: 2543403]
  • A Guerrero, A Darszon. Egg jelly triggers a calcium influx which inactivates and is inhibited by calmodulin antagonists in the sea urchin sperm. Biochimica et biophysica acta. 1989 Mar; 980(1):109-16. doi: 10.1016/0005-2736(89)90206-x. [PMID: 2923893]
  • F C Mohr, C Fewtrell. IgE receptor-mediated depolarization of rat basophilic leukemia cells measured with the fluorescent probe bis-oxonol. Journal of immunology (Baltimore, Md. : 1950). 1987 Mar; 138(5):1564-70. doi: NULL. [PMID: 2949017]
  • P E Tatham, P J Delves. Flow cytometric detection of membrane potential changes in murine lymphocytes induced by concanavalin A. The Biochemical journal. 1984 Jul; 221(1):137-46. doi: 10.1042/bj2210137. [PMID: 6540562]
  • T Bräuner, D F Hülser, R J Strasser. Comparative measurements of membrane potentials with microelectrodes and voltage-sensitive dyes. Biochimica et biophysica acta. 1984 Apr; 771(2):208-16. doi: 10.1016/0005-2736(84)90535-2. [PMID: 6704395]