Lignosulfonic acid (BioDeep_00000175284)

   

human metabolite blood metabolite


代谢物信息卡片


3-(2-Hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulphopropyl)phenoxy]propane-1-sulphonic acid

化学式: C20H26O10S2 (490.09673360000005)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC1=CC=CC(=C1O)CC(CS(=O)(=O)O)OC2=C(C=C(C=C2)CCCS(=O)(=O)O)OC
InChI: InChI=1S/C20H26O10S2/c1-28-18-7-3-6-15(20(18)21)12-16(13-32(25,26)27)30-17-9-8-14(11-19(17)29-2)5-4-10-31(22,23)24/h3,6-9,11,16,21H,4-5,10,12-13H2,1-2H3,(H,22,23,24)(H,25,26,27)



数据库引用编号

4 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Xinrui Zhang, Lifei Yang, Weicong Wang, Yuzhou Xiang, Jingshuai Liu, Yulong An, Junming Shi, Houjuan Qi, Zhanhua Huang. Sodium alginate/sodium lignosulfonate hydrogel based on inert Ca2+ activation for water conservation and growth promotion. Environmental research. 2024 Apr; 246(?):118144. doi: 10.1016/j.envres.2024.118144. [PMID: 38191043]
  • Marta Fuentes, German Bosch, David de Hita, Maite Olaetxea, Javier Erro, Angel Ma Zamarreño, Jose Ma Garcia-Mina. Supramolecular Arrangement of Lignosulfonate-Based Iron Heteromolecular Complexes and Consequences of Their Interaction with Ca2+ at Alkaline pH and Fe Plant Root Uptake Mechanisms. Journal of agricultural and food chemistry. 2023 Aug; 71(30):11404-11417. doi: 10.1021/acs.jafc.3c03474. [PMID: 37462422]
  • Ruitong Hong, Zile Zhang, Shenrui Pan, Yu Chen, Huan Wang, Wenli Zhang, Xuliang Lin. Construction of PVA-lignosulfonate hydrogels for improved mechanical performances and all-in-one flexible supercapacitors. International journal of biological macromolecules. 2023 Jan; 225(?):1494-1504. doi: 10.1016/j.ijbiomac.2022.11.206. [PMID: 36436604]
  • Yasin Orooji, Khatereh Pakzad, Mahmoud Nasrollahzadeh. Lignosulfonate valorization into a Cu-containing magnetically recyclable photocatalyst for treating wastewater pollutants in aqueous media. Chemosphere. 2022 Oct; 305(?):135180. doi: 10.1016/j.chemosphere.2022.135180. [PMID: 35660391]
  • Markéta Julinová, Ludmila Vaňharová, Dagmar Šašinková, Alena Kalendová, Iva Burešová. Characterization and biodegradation of ternary blends of lignosulfonate/synthetic zeolite/polyvinylpyrrolidone for agricultural chemistry. International journal of biological macromolecules. 2022 Jul; 213(?):110-122. doi: 10.1016/j.ijbiomac.2022.05.153. [PMID: 35644317]
  • Vivek Yadav, Sourav Banerjee, Satyaranjan Bairagi, Sujata Baisoya, S Wazed Ali. Green synthesis of sodium lignosulfonate nanoparticles using chitosan for significantly enhanced multifunctional characteristics. International journal of biological macromolecules. 2022 Jun; 211(?):380-389. doi: 10.1016/j.ijbiomac.2022.05.069. [PMID: 35569681]
  • Da-Xia Zhang, Rui Wang, Haichao Cao, Jian Luo, Tong-Fang Jing, Bei-Xing Li, Wei Mu, Feng Liu, Youming Hou. Emamectin benzoate nanogel suspension constructed from poly(vinyl alcohol)-valine derivatives and lignosulfonate enhanced insecticidal efficacy. Colloids and surfaces. B, Biointerfaces. 2022 Jan; 209(Pt 1):112166. doi: 10.1016/j.colsurfb.2021.112166. [PMID: 34739877]
  • Andrew De-Xian Kok, Wan Muhamad Asrul Nizam Wan Abdullah, Chu-Nie Tang, Lee-Yoon Low, Mohd Hafis Yuswan, Janna Ong-Abdullah, Ngai-Paing Tan, Kok-Song Lai. Sodium lignosulfonate improves shoot growth of Oryza sativa via enhancement of photosynthetic activity and reduced accumulation of reactive oxygen species. Scientific reports. 2021 06; 11(1):13226. doi: 10.1038/s41598-021-92401-x. [PMID: 34168171]
  • Xin Li, Xiaohong Wang, Tiantian Han, Chen Hao, Shiqi Han, Xiangbo Fan. Synthesis of sodium lignosulfonate-guar gum composite hydrogel for the removal of Cu2+ and Co2. International journal of biological macromolecules. 2021 Apr; 175(?):459-472. doi: 10.1016/j.ijbiomac.2021.02.018. [PMID: 33549663]
  • Adam Ekielski, Pawan Kumar Mishra. Lignin for Bioeconomy: The Present and Future Role of Technical Lignin. International journal of molecular sciences. 2020 Dec; 22(1):. doi: 10.3390/ijms22010063. [PMID: 33374628]
  • Davide Savy, Vincenza Cozzolino, Marios Drosos, Pierluigi Mazzei, Alessandro Piccolo. Replacing calcium with ammonium counterion in lignosulfonates from paper mills affects their molecular properties and bioactivity. The Science of the total environment. 2018 Dec; 645(?):411-418. doi: 10.1016/j.scitotenv.2018.07.153. [PMID: 30025241]
  • Fei Gao, Sha Yu, Qun Tao, Weiming Tan, Liusheng Duan, Zhaohu Li, Haixin Cui. Lignosulfonate Improves Photostability and Bioactivity of Abscisic Acid under Ultraviolet Radiation. Journal of agricultural and food chemistry. 2018 Jul; 66(26):6585-6593. doi: 10.1021/acs.jafc.7b02002. [PMID: 28851212]
  • Yingli Cai, Yuhua Gong, Wei Liu, Yue Hu, Lianfu Chen, Lianlian Yan, Yan Zhou, Yinbing Bian. Comparative secretomic analysis of lignocellulose degradation by Lentinula edodes grown on microcrystalline cellulose, lignosulfonate and glucose. Journal of proteomics. 2017 06; 163(?):92-101. doi: 10.1016/j.jprot.2017.04.023. [PMID: 28483534]
  • Jingyang Xu, Wei Du, Xuebing Zhao, Dehua Liu. Renewable microbial lipid production from Oleaginous Yeast: some surfactants greatly improved lipid production of Rhodosporidium toruloides. World journal of microbiology & biotechnology. 2016 Jul; 32(7):107. doi: 10.1007/s11274-016-2076-6. [PMID: 27263002]
  • Hongming Lou, Long Yuan, Xueqing Qiu, Kexian Qiu, Jinguo Fu, Yuxia Pang, Jinhao Huang. Enhancing enzymatic hydrolysis of xylan by adding sodium lignosulfonate and long-chain fatty alcohols. Bioresource technology. 2016 Jan; 200(?):48-54. doi: 10.1016/j.biortech.2015.10.006. [PMID: 26476164]
  • Baran Arslan, Xiaohui Ju, Xiao Zhang, Nehal I Abu-Lail. Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study. Langmuir : the ACS journal of surfaces and colloids. 2015 Sep; 31(37):10233-45. doi: 10.1021/acs.langmuir.5b02633. [PMID: 26339982]
  • A A Ivashechkin, J E Sergeeva, V V Lunin, J S Mysyakina, E P Feofilova. [Antioxidant Effect on the Growth And Formation of Lipids in the Fungus Lentinus tigrinus Growing on Medium with Lignosulfonate]. Prikladnaia biokhimiia i mikrobiologiia. 2015 May; 51(3):335-9. doi: 10.7868/s0555109915030101. [PMID: 26204778]
  • Stephanie C Gordts, Geoffrey Férir, Thomas D'huys, Mariya I Petrova, Sarah Lebeer, Robert Snoeck, Graciela Andrei, Dominique Schols. The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications. PloS one. 2015; 10(7):e0131219. doi: 10.1371/journal.pone.0131219. [PMID: 26132818]
  • Edwige Privas, Patrick Navard. Preparation, processing and properties of lignosulfonate-flax composite boards. Carbohydrate polymers. 2013 Mar; 93(1):300-6. doi: 10.1016/j.carbpol.2012.04.060. [PMID: 23465934]
  • Randal L Shogren, Atanu Biswas. Preparation of starch-sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydrate polymers. 2013 Jan; 91(2):581-5. doi: 10.1016/j.carbpol.2012.08.079. [PMID: 23121948]
  • Xuebing Zhao, Feng Peng, Wei Du, Canming Liu, Dehua Liu. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess and biosystems engineering. 2012 Aug; 35(6):993-1004. doi: 10.1007/s00449-012-0684-6. [PMID: 22252420]
  • Andrea Ertani, Ornella Francioso, Vitaliano Tugnoli, Valeria Righi, Serenella Nardi. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. Journal of agricultural and food chemistry. 2011 Nov; 59(22):11940-8. doi: 10.1021/jf202473e. [PMID: 21999168]
  • Ana Benedicto, Lourdes Hernández-Apaolaza, Inmaculada Rivas, Juan J Lucena. Determination of 67Zn distribution in navy bean (Phaseolus vulgaris L.) after foliar application of 67Zn-lignosulfonates using isotope pattern deconvolution. Journal of agricultural and food chemistry. 2011 Aug; 59(16):8829-38. doi: 10.1021/jf2002574. [PMID: 21732694]
  • Patricia Rodríguez-Lucena, Ana Benedicto, Juan J Lucena, José A Rodríguez-Castrillón, Mariella Moldovan, J Ignacio García Alonso, Lourdes Hernández-Apaolaza. Use of the stable isotope (57) Fe to track the efficacy of the foliar application of lignosulfonate/Fe(3+) complexes to correct Fe deficiencies in cucumber plants. Journal of the science of food and agriculture. 2011 Feb; 91(3):395-404. doi: 10.1002/jsfa.4197. [PMID: 21218472]
  • Diego Martín-Ortiz, Lourdes Hernández-Apaolaza, Agustín Gárate. Wheat (Triticum aestivum L.) response to a zinc fertilizer applied as zinc lignosulfonate adhered to a NPK fertilizer. Journal of agricultural and food chemistry. 2010 Jul; 58(13):7886-92. doi: 10.1021/jf100693t. [PMID: 20527916]
  • Diego Martín-Ortiz, Lourdes Hernández-Apaolaza, Agustín Gárate. Efficiency of a NPK fertilizer with adhered zinc lignosulfonate as a zinc source for maize (Zea mays L.). Journal of agricultural and food chemistry. 2009 Oct; 57(19):9071-8. doi: 10.1021/jf9017965. [PMID: 19761209]
  • C F Wright, M A G von Keyserlingk, M L Swift, L J Fisher, J A Shelford, N E Dinn. Heat- and lignosulfonate-treated canola meal as a source of ruminal undegradable protein for lactating dairy cows. Journal of dairy science. 2005 Jan; 88(1):238-43. doi: 10.3168/jds.s0022-0302(05)72681-3. [PMID: 15591386]
  • A Nadif, D Hunkeler, P Käuper. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Bioresource technology. 2002 Aug; 84(1):49-55. doi: 10.1016/s0960-8524(02)00020-2. [PMID: 12137268]
  • L M López-Valdivia, M D Fernández, A Obrador, J M Alvarez. Zinc transformations in acidic soil and zinc efficiency on maize by adding six organic zinc complexes. Journal of agricultural and food chemistry. 2002 Mar; 50(6):1455-60. doi: 10.1021/jf010978v. [PMID: 11879020]
  • E A Flickinger, J M Campbell, L G Schmitt, G C Fahey. Selected lignosulfonate fractions affect growth performance, digestibility, and cecal and colonic properties in rats. Journal of animal science. 1998 Jun; 76(6):1626-35. doi: 10.2527/1998.7661626x. [PMID: 9655583]
  • G W Meijer, A C Beynen. Serum and liver cholesterol concentrations in rats fed diets containing a lignosulphonate preparation. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 1991; 61(4):372-3. doi: NULL. [PMID: 1806544]
  • M Kiilunen, H Kivistö, P Ala-Laurila, A Tossavainen, A Aitio. Exceptional pharmacokinetics of trivalent chromium during occupational exposure to chromium lignosulfonate dust. Scandinavian journal of work, environment & health. 1983 Jun; 9(3):265-71. doi: 10.5271/sjweh.2410. [PMID: 6612268]
  • L De Zutter, J van Hoof. Removal of indicator organisms by chemical treatment of wastewater. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene. 1. Abt. Originale B, Hygiene. 1981; 173(3-4):266-72. doi: ". [PMID: 7197865]
  • C Hipolito-Reis, M Sobrinho-Simões, A Ferraz, F Cerqueira-Magro. [Anti-insulin type urinary peptide in Lawrence's lipo-atrophic diabetes]. La Revue francaise d'endocrinologie clinique, nutrition, et metabolisme. 1968 Sep; 9(5):373-80. doi: NULL. [PMID: 5702099]