TG(12:0/12:0/12:0) (BioDeep_00000017442)
Secondary id: BioDeep_00000605233
human metabolite PANOMIX_OTCML-2023 Endogenous LipidSearch
代谢物信息卡片
化学式: C39H74O6 (638.5485104)
中文名称: 三月桂酸甘油酯
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 1.36%
Last reviewed on 2024-09-24.
Cite this Page
TG(12:0/12:0/12:0). BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/tg(12:0_12:0_12:0) (retrieved
2024-11-10) (BioDeep RN: BioDeep_00000017442). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(OC(=O)CCCCCCCCCCC)[C@]([H])(OC(CCCCCCCCCCC)=O)COC(CCCCCCCCCCC)=O
InChI: InChI=1S/C39H74O6/c1-4-7-10-13-16-19-22-25-28-31-37(40)43-34-36(45-39(42)33-30-27-24-21-18-15-12-9-6-3)35-44-38(41)32-29-26-23-20-17-14-11-8-5-2/h36H,4-35H2,1-3H3
描述信息
TG(12:0/12:0/12:0) or trilauric glyceride is a tridodecanoic acid triglyceride or medium chain triglyceride. Triglycerides (TGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid tri-esters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(12:0/12:0/12:0), in particular, consists of one chain of dodecanoic acid at the C-1 position, one chain of dodecanoic acid at the C-2 position and one chain of dodecanoic acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols.
Trilaurin is a triglyceride obtained by formal acylation of the three hydroxy groups of glycerol by lauric (dodecanoic) acid. It is a triglyceride and a dodecanoate ester.
Trilaurin is a natural product found in Umbellularia californica and Cullen corylifolium with data available.
A triglyceride obtained by formal acylation of the three hydroxy groups of glycerol by lauric (dodecanoic) acid.
TG(12:0/12:0/12:0) or trilauric glyceride is a tridodecanoic acid triglyceride or medium chain triglyceride. Triglycerides (TGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid tri-esters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(12:0/12:0/12:0), in particular, consists of one chain of dodecanoic acid at the C-1 position, one chain of dodecanoic acid at the C-2 position and one chain of dodecanoic acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org)
Trilaurin could inhibit the formation of neoplasms initiated by dimethylbenzanthracene (DMBA) and promoted by croton oil[1].
Trilaurin could inhibit the formation of neoplasms initiated by dimethylbenzanthracene (DMBA) and promoted by croton oil[1].
同义名列表
71 个代谢物同义名
Trilaurin, European Pharmacopoeia (EP) Reference Standard; Dodecanoic acid, 1,1,1-(1,2,3-propanetriyl) ester; 1-Dodecanoyl-2-dodecanoyl-3-dodecanoyl-glycerol; 1,3-bis(dodecanoyloxy)propan-2-yl dodecanoate; Dodecanoic acid, 1,2,3-propanetriyl ester; Dodecanoic acid, tri-ester with glycerol; Dodecanoic acid, 1,2,3-propantriyl ester; Dodecanoic acid 1,2,3-propanetriyl ester; 2,3-di(dodecanoyloxy)propyl dodecanoate; 2,3-Bis(dodecanoyloxy)propyl laurate #; Dodecanoic acid,2,3-propanetriyl ester; Dodecanoate 1,2,3-propanetriyl ester; 1,2,3-tridodecanoyl-sn-sn-glycerol; propane-1,2,3-triyl tridodecanoate; Propane-1,2,3-triyl trilauric acid; 1,2,3-Propanetriol tridodecanoate; Propane-1,2,3-triyl trilaic acid; 1,2,3-tridodecanoyl-sn-glycerol; Glyceryl tridodecanoate, >=99\\%; propane-1,2,3-triyl trilaurate; Tracylglycerol(12:0/12:0/12:0); Lauric acid triglycerin ester; 1,2,3-tridodecanoyl-glycerol; Propane-1,2,3-triyl trilaate; Glyceryl tridodecanoic acid; VMPHSYLJUKZBJJ-UHFFFAOYSA-N; 1,2,3-Tridodecanoylglycerol; Laic acid triglycerin ester; Lauric acid triglyceride; 1,2,3-Trilauroylglycerol; Glycerol trilauric acid; Laate triglycerin ester; Glyceryl trilauric acid; Glycerin trilauric acid; Glyceryl tridodecanoate; GLYCERIN TRIDODECANOATE; Laic acid triglyceride; Tridodecanoyl glycerol; Glyceryl trilaic acid; Glycerin trilaic acid; tridodecanoylglycerol; Glycerol trilaic acid; Tracylglycerol(36:0); Glycerin trilaurate; LAURIC TRIGLYCERIDE; TAG(12:0/12:0/12:0); Trilauroyl-glycerol; Glycerol trilaurate; Glyceryl trilaurate; TG(12:0/12:0/12:0); Trilauroylglycerol; Laate triglyceride; TG 12:0/12:0/12:0; Glycerol trilaate; Glycerin trilaate; Glyceryl trilaate; TRILAURIN [INCI]; UNII-7FP2Z3RVUV; Triacylglycerol; Tridodecanoin; Laurin, tri-; Triglyceride; 7FP2Z3RVUV; Tri-laurin; AI3-11124; TAG(36:0); Trilaurin; TAG 36:0; TG(36:0); TG 36:0; Glycerol tridodecanoate
数据库引用编号
13 个数据库交叉引用编号
- ChEBI: CHEBI:77389
- PubChem: 10851
- HMDB: HMDB0011188
- LipidMAPS: LMGL03012618
- MeSH: trilaurin
- ChemIDplus: 0000538249
- foodb: FDB002906
- CAS: 538-24-9
- medchemexpress: HY-126573
- PMhub: MS000080706
- MetaboLights: MTBLC77389
- RefMet: TG 12:0/12:0/12:0
- RefMet: TG 36:0
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
5 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(5)
- Triacylglycerol metabolism TG(12:0/12:0/12:0):
MG(12:0/0:0/0:0) + Water ⟶ Glycerol + Hydrogen Ion + Palmitic acid
- De Novo Triacylglycerol Biosynthesis TG(12:0/12:0/12:0):
Glycerol 3-phosphate + Lauroyl-CoA ⟶ Coenzyme A + LPA(12:0/0:0)
- De Novo Triacylglycerol Biosynthesis TG(12:0/12:0/12:0):
Glycerol 3-phosphate + Lauroyl-CoA ⟶ Coenzyme A + LPA(12:0/0:0)
- De Novo Triacylglycerol Biosynthesis TG(12:0/12:0/12:0):
Glycerol 3-phosphate + Lauroyl-CoA ⟶ Coenzyme A + LPA(12:0/0:0)
- De Novo Triacylglycerol Biosynthesis TG(12:0/12:0/12:0):
Glycerol 3-phosphate + Lauroyl-CoA ⟶ Coenzyme A + LPA(12:0/0:0)
PharmGKB(0)
4 个相关的物种来源信息
- 429560 - Cullen corylifolium: 10.1016/0031-9422(80)83035-4
- 9606 - Homo sapiens: -
- 33090 - Plants: -
- 3438 - Umbellularia californica: 10.1007/BF02657546
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Van-Trung-Tin Huynh, Suenia de Paiva Lacerda, Fabienne Espitalier, Eric Beyssac, Maria-Inês Ré. Effect of talc and vitamin E TPGS on manufacturability, stability and release properties of trilaurin-based formulations for hot-melt coating.
International journal of pharmaceutics.
2024 Mar; 653(?):123866. doi:
10.1016/j.ijpharm.2024.123866
. [PMID: 38286194] - Namrah Khan, Fawad Ali Shah, Isra Rana, Muhammad Mohsin Ansari, Fakhar Ud Din, Syed Zaki Husain Rizvi, Waqar Aman, Gwan-Yeong Lee, Eun-Sun Lee, Jin-Ki Kim, Alam Zeb. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity.
International journal of pharmaceutics.
2020 Mar; 577(?):119033. doi:
10.1016/j.ijpharm.2020.119033
. [PMID: 31954864] - Yew Chee Kam, Kwan Kit Woo, Lisa Gaik Ai Ong. One-Step Partially Purified Lipases (ScLipA and ScLipB) from Schizophyllum commune UTARA1 Obtained via Solid State Fermentation and Their Applications.
Molecules (Basel, Switzerland).
2017 Dec; 22(12):. doi:
10.3390/molecules22122106
. [PMID: 29292721] - Omer Salman Qureshi, Alam Zeb, Muhammad Akram, Myung-Sic Kim, Jong-Ho Kang, Hoo-Seong Kim, Arshad Majid, Inbo Han, Sun-Young Chang, Ok-Nam Bae, Jin-Ki Kim. Enhanced acute anti-inflammatory effects of CORM-2-loaded nanoparticles via sustained carbon monoxide delivery.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2016 Nov; 108(?):187-195. doi:
10.1016/j.ejpb.2016.09.008
. [PMID: 27634645] - Philip Carsten Christophersen, Long Zhang, Anette Müllertz, Hanne Mørck Nielsen, Mingshi Yang, Huiling Mu. Solid lipid particles for oral delivery of peptide and protein drugs II--the digestion of trilaurin protects desmopressin from proteolytic degradation.
Pharmaceutical research.
2014 Sep; 31(9):2420-8. doi:
10.1007/s11095-014-1337-z
. [PMID: 24623481] - Prawarisa Wasutrasawat, Hisham Al-Obaidi, Simon Gaisford, M Jayne Lawrence, Warangkana Warisnoicharoen. Drug solubilisation in lipid nanoparticles containing high melting point triglycerides.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2013 Nov; 85(3 Pt A):365-71. doi:
10.1016/j.ejpb.2013.04.020
. [PMID: 23688806] - Chunhui Chen, Tingting Fan, Yun Jin, Zhou Zhou, Yang Yang, Xi Zhu, Zhi-Rong Zhang, Qiang Zhang, Yuan Huang. Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle-double emulsion method via the combined use of different solid lipids.
Nanomedicine (London, England).
2013 Jul; 8(7):1085-100. doi:
10.2217/nnm.12.141
. [PMID: 23075315] - Wenting Xu, Soo-Jeong Lim, Mi-Kyung Lee. Cellular uptake and antitumour activity of paclitaxel incorporated into trilaurin-based solid lipid nanoparticles in ovarian cancer.
Journal of microencapsulation.
2013; 30(8):755-61. doi:
10.3109/02652048.2013.788083
. [PMID: 23594306] - Arnaldo Glogauer, Viviane P Martini, Helisson Faoro, Gustavo H Couto, Marcelo Müller-Santos, Rose A Monteiro, David A Mitchell, Emanuel M de Souza, Fabio O Pedrosa, Nadia Krieger. Identification and characterization of a new true lipase isolated through metagenomic approach.
Microbial cell factories.
2011 Jul; 10(?):54. doi:
10.1186/1475-2859-10-54
. [PMID: 21762508] - Céline Fernandez, Kai Schuhmann, Ronny Herzog, Barbara Fielding, Keith Frayn, Andrej Shevchenko, Peter James, Cecilia Holm, Kristoffer Ström. Altered desaturation and elongation of fatty acids in hormone-sensitive lipase null mice.
PloS one.
2011; 6(6):e21603. doi:
10.1371/journal.pone.0021603
. [PMID: 21738729] - Sriharsha Gupta Potta, Sriharsha Minemi, Ravi Kumar Nukala, Chairmane Peinado, Dimitrios A Lamprou, Andrew Urquhart, D Douroumis. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs.
Journal of biomedical nanotechnology.
2010 Dec; 6(6):634-40. doi:
10.1166/jbn.2010.1169
. [PMID: 21361127] - Christopher J Pynn, M Victoria Picardi, Tim Nicholson, Dorothee Wistuba, Christian F Poets, Erwin Schleicher, Jesus Perez-Gil, Wolfgang Bernhard. Myristate is selectively incorporated into surfactant and decreases dipalmitoylphosphatidylcholine without functional impairment.
American journal of physiology. Regulatory, integrative and comparative physiology.
2010 Nov; 299(5):R1306-16. doi:
10.1152/ajpregu.00380.2010
. [PMID: 20811010] - Philippe Legrand, Erwan Beauchamp, Daniel Catheline, Frédérique Pédrono, Vincent Rioux. Short chain saturated fatty acids decrease circulating cholesterol and increase tissue PUFA content in the rat.
Lipids.
2010 Nov; 45(11):975-86. doi:
10.1007/s11745-010-3481-5
. [PMID: 20924709] - Rama Mallipeddi, Lisa Cencia Rohan. Progress in antiretroviral drug delivery using nanotechnology.
International journal of nanomedicine.
2010 Aug; 5(?):533-47. doi:
10.2147/ijn.s7681
. [PMID: 20957115] - P S Khushboo, V M Jadhav, V J Kadam, N S Sathe. Psoralea corylifolia Linn.-'Kushtanashini'.
Pharmacognosy reviews.
2010 Jan; 4(7):69-76. doi:
10.4103/0973-7847.65331
. [PMID: 22228944] - Maike Windbergs, Clare Joanna Strachan, Peter Kleinebudde. Influence of structural variations on drug release from lipid/polyethylene glycol matrices.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2009 Jul; 37(5):555-62. doi:
10.1016/j.ejps.2009.04.010
. [PMID: 19406229] - Wen-Dung Hsu, Angela Violi. Order-disorder phase transformation of triacylglycerols: effect of the structure of the aliphatic chains.
The journal of physical chemistry. B.
2009 Jan; 113(4):887-93. doi:
10.1021/jp806440d
. [PMID: 19123841] - Maike Windbergs, Clare J Strachan, Peter Kleinebudde. Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2009 Jan; 71(1):80-7. doi:
10.1016/j.ejpb.2008.05.015
. [PMID: 18588976] - E Caudron, J Y Zhou, P England, M Ollivon, P Prognon. Some insights about 1,6-diphenyl-1,3,5-hexatriene-lipid supramolecular assemblies by steady-state fluorescence measurements.
Applied spectroscopy.
2007 Sep; 61(9):963-9. doi:
10.1366/000370207781745937
. [PMID: 17910793] - Tilakavati Karupaiah, Kalyana Sundram. Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications.
Nutrition & metabolism.
2007 Jul; 4(?):16. doi:
10.1186/1743-7075-4-16
. [PMID: 17625019] - Swati Gupta, Suresh P Vyas. Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting.
Journal of drug targeting.
2007 Apr; 15(3):206-17. doi:
10.1080/10611860701195395
. [PMID: 17454358] - Melike Uner, Gülgün Yener. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives.
International journal of nanomedicine.
2007; 2(3):289-300. doi:
NULL
. [PMID: 18019829] - C Guse, S Koennings, F Kreye, F Siepmann, A Goepferich, J Siepmann. Drug release from lipid-based implants: elucidation of the underlying mass transport mechanisms.
International journal of pharmaceutics.
2006 May; 314(2):137-44. doi:
10.1016/j.ijpharm.2005.08.030
. [PMID: 16503388] - S P Vyas, Rasika Subhedar, Sanyog Jain. Development and characterization of emulsomes for sustained and targeted delivery of an antiviral agent to liver.
The Journal of pharmacy and pharmacology.
2006 Mar; 58(3):321-6. doi:
10.1211/jpp.58.3.0005
. [PMID: 16536898] - Heike Bunjes, Michel H J Koch. Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles.
Journal of controlled release : official journal of the Controlled Release Society.
2005 Oct; 107(2):229-43. doi:
10.1016/j.jconrel.2005.06.004
. [PMID: 16023752] - Tomoko Nii, Fumiyoshi Ishii. Dialkylphosphatidylcholine and egg yolk lecithin for emulsification of various triglycerides.
Colloids and surfaces. B, Biointerfaces.
2005 Apr; 41(4):305-11. doi:
10.1016/j.colsurfb.2004.12.017
. [PMID: 15748826] - J L Murphy, A V Badaloo, B Chambers, T E Forrester, S A Wootton, A A Jackson. Maldigestion and malabsorption of dietary lipid during severe childhood malnutrition.
Archives of disease in childhood.
2002 Dec; 87(6):522-5. doi:
10.1136/adc.87.6.522
. [PMID: 12456554] - G J A Wanten, F P Janssen, A H J Naber. Saturated triglycerides and fatty acids activate neutrophils depending on carbon chain-length.
European journal of clinical investigation.
2002 Apr; 32(4):285-9. doi:
10.1046/j.1365-2362.2002.00959.x
. [PMID: 11952815] - S Iu Zaĭtsev, B Aha, T A Volchenkova, S V Belov, M P Schneider, A E Ivanov. [The study of hydrolysis of new lipid-like substrates and trilaurin in monolayers catalyzed with the lipase from Pseudomonas fluorescens].
Bioorganicheskaia khimiia.
2000 Mar; 26(3):224-30. doi:
"
. [PMID: 10816821] - J R Mancuso, D J McClements, E A Decker. Iron-accelerated cumene hydroperoxide decomposition in hexadecane and trilaurin emulsions.
Journal of agricultural and food chemistry.
2000 Feb; 48(2):213-9. doi:
10.1021/jf990757d
. [PMID: 10691618] - H Heiati, R Tawashi, N C Phillips. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization.
Journal of microencapsulation.
1998 Mar; 15(2):173-84. doi:
10.3109/02652049809006847
. [PMID: 9532523] - H Heiati, N C Phillips, R Tawashi. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride.
Pharmaceutical research.
1996 Sep; 13(9):1406-10. doi:
10.1023/a:1016090420759
. [PMID: 8893283] - A Sreenivas, P S Sastry. Synthesis of trilaurin by developing pisa seeds (Actinodaphne hookeri).
Archives of biochemistry and biophysics.
1994 Jun; 311(2):229-34. doi:
10.1006/abbi.1994.1231
. [PMID: 8203885] - T L Carlson, B A Kottke. Effect of coconut oil on plasma apo A-I levels in WHHL and NZW rabbits.
Biochimica et biophysica acta.
1991 Jun; 1083(3):221-9. doi:
10.1016/0005-2760(91)90075-s
. [PMID: 2049387]