Triclocarban (BioDeep_00000170030)

   

human metabolite blood metabolite Industrial Pollutants


代谢物信息卡片


N-(4-Chlorophenyl)-n-(3,4-dichlorophenyl)urea

化学式: C13H9Cl3N2O (313.978)
中文名称: 三氯卡班
谱图信息: 最多检出来源 Homo sapiens(blood) 100%

分子结构信息

SMILES: C1=CC(=CC=C1NC(=O)NC2=CC(=C(C=C2)Cl)Cl)Cl
InChI: InChI=1S/C13H9Cl3N2O/c14-8-1-3-9(4-2-8)17-13(19)18-10-5-6-11(15)12(16)7-10/h1-7H,(H2,17,18,19)

描述信息

C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
D004785 - Environmental Pollutants > D014873 - Water Pollutants
D000890 - Anti-Infective Agents

同义名列表

18 个代谢物同义名

N-(4-Chlorophenyl)-n-(3,4-dichlorophenyl)urea; 3-(4-chlorophenyl)-1-(3,4-dichlorophenyl)urea; 1-(3,4-Dichlorophenyl)-3-(4-chlorophenyl)urea; 3,4,4-Trichlorodiphenylurea; 3,4,4-Trichloro carbanilide; 3,4,4-Trichlorocarbanilide; Trichlorocarbanilide; Septivon-lavril; Trichlorcarban; Triclocarbanum; Triclocarban; Solubacter; Nobacter; Septivon; Cutisan; TCC; TCC; Triclocarban



数据库引用编号

9 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Hitoshi Nakamura, Toshikatsu Matsui, Tadahiro Shinozawa. Triclocarban induces lipid droplet accumulation and oxidative stress responses by inhibiting mitochondrial fatty acid oxidation in HepaRG cells. Toxicology letters. 2024 May; 396(?):11-18. doi: 10.1016/j.toxlet.2024.04.002. [PMID: 38631510]
  • Mingyu Sang, Shuyu Liu, Haohao Yan, Bing Zhang, Siyuan Chen, Bowen Wu, Tian Ma, Hanyi Jiang, Peichao Zhao, Guanjun Sun, Xinyan Gao, Hailian Zang, Yi Cheng, Chunyan Li. Synergistic detoxification efficiency and mechanism of triclocarban degradation by a bacterial consortium in the liver-gut-microbiota axis of zebrafish (Danio rerio). Journal of hazardous materials. 2024 May; 470(?):134178. doi: 10.1016/j.jhazmat.2024.134178. [PMID: 38608581]
  • Huiying Zhang, Weifeng Chen, Zhichong Qi, Wei Qian, Liumin Yang, Ran Wei, Jinzhi Ni. Biochar improved the solubility of triclocarban in aqueous environment: Insight into the role of biochar-derived dissolved organic carbon. Chemosphere. 2024 Mar; 351(?):141172. doi: 10.1016/j.chemosphere.2024.141172. [PMID: 38211797]
  • Jia-Da Zhang, Sen He, Ting-Ting He, Chuan-Hai Li, Bing-Hua Yan, Yuan Yang, Jian Yang, Lin Luo, Yu-Long Yin, Lin-Ying Cao. Triclocarban exhibits higher adipogenic activity than triclosan through peroxisome proliferator-activated receptors pathways. Environmental pollution (Barking, Essex : 1987). 2024 Feb; 342(?):123030. doi: 10.1016/j.envpol.2023.123030. [PMID: 38030110]
  • Siwen Li, Jiaqi Xie, Keman Li, Yiang Bai, Zhihao Jiang, Xuan Xiong. Mulberrin alleviates triclocarban induced hepatic apoptosis and inflammation by regulating the ROS/NF-κB pathway in grass carp. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2023 Nov; 273(?):109734. doi: 10.1016/j.cbpc.2023.109734. [PMID: 37673375]
  • Hao Wang, Hui Yun, Minghan Li, Hanlin Cui, Xiaodan Ma, Yanqing Zhang, Xuanyuan Pei, Liying Zhang, Ke Shi, Zhiling Li, Bin Liang, Aijie Wang, Jizhong Zhou. Fate, toxicity and effect of triclocarban on the microbial community in wastewater treatment systems. Journal of hazardous materials. 2022 10; 440(?):129796. doi: 10.1016/j.jhazmat.2022.129796. [PMID: 36007371]
  • Yuchen Song, Cui Zhang, Hehua Lei, Mengyu Qin, Gui Chen, Fang Wu, Chuan Chen, Zheng Cao, Ce Zhang, Mengjing Wu, Xiaoyu Chen, Limin Zhang. Characterization of triclosan-induced hepatotoxicity and triclocarban-triggered enterotoxicity in mice by multiple omics screening. The Science of the total environment. 2022 Sep; 838(Pt 4):156570. doi: 10.1016/j.scitotenv.2022.156570. [PMID: 35690209]
  • Zhenguang Yan, Jinzhe Du, Tianxu Zhang, Qianhang Sun, Binbin Sun, Yan Zhang, Shuo Li. Impairment of the gut health in Danio rerio exposed to triclocarban. The Science of the total environment. 2022 Aug; 832(?):155025. doi: 10.1016/j.scitotenv.2022.155025. [PMID: 35390376]
  • Habibeh Nasab, Saeed Rajabi, Moghaddameh Mirzaee, Majid Hashemi. Association of urinary triclosan, methyl triclosan, triclocarban, and 2,4-dichlorophenol levels with anthropometric and demographic parameters in children and adolescents in 2020 (case study: Kerman, Iran). Environmental science and pollution research international. 2022 Apr; 29(20):30754-30763. doi: 10.1007/s11356-021-18466-3. [PMID: 34993832]
  • Zhiqi Wang, Jingfeng Gao, Shijie Wang, Yifan Zhao, Huihui Dai, Dingchang Li, Yingchao Cui, Ziqiao Li. Triclocarban shifted the microbial communities and promoted the spread of antibiotic resistance genes in nitrifying granular sludge system. Bioresource technology. 2022 Mar; 347(?):126429. doi: 10.1016/j.biortech.2021.126429. [PMID: 34838974]
  • Hua Zhang, Jingxia Li, Yulin An, Desheng Wang, Jianfu Zhao, Meixiao Zhan, Weiguo Xu, Ligong Lu, Yunfei Gao. Concentrations of bisphenols, benzophenone-type ultraviolet filters, triclosan, and triclocarban in the paired urine and blood samples from young adults: Partitioning between urine and blood. Chemosphere. 2022 Feb; 288(Pt 2):132563. doi: 10.1016/j.chemosphere.2021.132563. [PMID: 34653480]
  • Hyeong-Moo Shin, Jiwon Oh, Kyunghoon Kim, Stefanie A Busgang, Dana Boyd Barr, Parinya Panuwet, Rebecca J Schmidt, Irva Hertz-Picciotto, Deborah H Bennett. Variability of Urinary Concentrations of Phenols, Parabens, and Triclocarban during Pregnancy in First Morning Voids and Pooled Samples. Environmental science & technology. 2021 12; 55(23):16001-16010. doi: 10.1021/acs.est.1c04140. [PMID: 34817155]
  • Hua Zhang, Jingxia Li, Yanfang Chen, Desheng Wang, Weiguo Xu, Yunfei Gao. Profiles of parabens, benzophenone-type ultraviolet filters, triclosan, and triclocarban in paired urine and indoor dust samples from Chinese university students: Implications for human exposure. The Science of the total environment. 2021 Dec; 798(?):149275. doi: 10.1016/j.scitotenv.2021.149275. [PMID: 34333440]
  • Minghui Han, Yuanping Wang, Chuanxi Tang, Hongji Fang, Dongjian Yang, Jingui Wu, Hexing Wang, Yue Chen, Qingwu Jiang. Association of triclosan and triclocarban in urine with obesity risk in Chinese school children. Environment international. 2021 12; 157(?):106846. doi: 10.1016/j.envint.2021.106846. [PMID: 34455189]
  • Amelia K Wesselink, Jennifer Weuve, Victoria Fruh, Traci N Bethea, Birgit Claus Henn, Quaker E Harmon, Russ Hauser, Paige L Williams, Antonia M Calafat, Michael McClean, Donna D Baird, Lauren A Wise. Urinary concentrations of phenols, parabens, and triclocarban in relation to uterine leiomyomata incidence and growth. Fertility and sterility. 2021 12; 116(6):1590-1600. doi: 10.1016/j.fertnstert.2021.07.003. [PMID: 34366109]
  • Guangqiang Wang, Hongna Zhang, Jianan Zhang, Katherine Z Sanidad, Vladimir Yeliseyev, Julie Parsonnet, Thomas D Haggerty, Haixia Yang, Lianzhong Ai, Minhao Xie, Zongwei Cai, Guodong Zhang. Metabolic fate of environmental chemical triclocarban in colon tissues: roles of gut microbiota involved. The Science of the total environment. 2021 Sep; 787(?):147677. doi: 10.1016/j.scitotenv.2021.147677. [PMID: 34004538]
  • Yun Wang, Guoliang Li, Qingqing Zhu, Chunyang Liao. Occurrence of parabens, triclosan and triclocarban in paired human urine and indoor dust from two typical cities in China and its implications for human exposure. The Science of the total environment. 2021 Sep; 786(?):147485. doi: 10.1016/j.scitotenv.2021.147485. [PMID: 33975120]
  • Zi-Feng Zhang, Lu Wang, Xianming Zhang, Xue Zhang, Yi-Fan Li, Anatoly Nikolaev, Wen-Long Li. Fate processes of Parabens, Triclocarban and Triclosan during wastewater treatment: assessment via field measurements and model simulations. Environmental science and pollution research international. 2021 Sep; 28(36):50602-50610. doi: 10.1007/s11356-021-14141-9. [PMID: 33963991]
  • Kyunghoon Kim, Hyeong-Moo Shin, Stefanie A Busgang, Dana Boyd Barr, Parinya Panuwet, Rebecca J Schmidt, Irva Hertz-Picciotto, Deborah H Bennett. Temporal Trends of Phenol, Paraben, and Triclocarban Exposure in California Pregnant Women during 2007-2014. Environmental science & technology. 2021 08; 55(16):11155-11165. doi: 10.1021/acs.est.1c01564. [PMID: 34347462]
  • Qiong Luo, Hongna Zhang, Yanqiu Zhou, Zehua Liu, Zongwei Cai. Simultaneous determination of triclosan, triclocarban, triclocarban metabolites and byproducts in urine and serum by ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid communications in mass spectrometry : RCM. 2021 Jul; 35(14):e9117. doi: 10.1002/rcm.9117. [PMID: 33928686]
  • Hilde Kristin Vindenes, Cecilie Svanes, Stein Håkon Låstad Lygre, Francisco Gomez Real, Tamar Ringel-Kulka, Randi Jacobsen Bertelsen. Exposure to environmental phenols and parabens, and relation to body mass index, eczema and respiratory outcomes in the Norwegian RHINESSA study. Environmental health : a global access science source. 2021 07; 20(1):81. doi: 10.1186/s12940-021-00767-2. [PMID: 34256787]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Han Qu, Holly Barrett, Bin Wang, Jiajun Han, Fang Wang, Wenwen Gong, Junxue Wu, Wei Wang, Gang Yu. Co-occurrence of antiseptic triclocarban and chiral anti-inflammatory ibuprofen in environment: Association between biological effect in sediment and risk to human health. Journal of hazardous materials. 2021 04; 407(?):124871. doi: 10.1016/j.jhazmat.2020.124871. [PMID: 33360191]
  • Suramya Waidyanatha, Sherry R Black, Purvi R Patel, Scott L Watson, Rodney W Snyder, Vicki Sutherland, Jason Stanko, Timothy R Fennell. Disposition and metabolism of antibacterial agent, triclocarban, in rodents; a species and route comparison. Xenobiotica; the fate of foreign compounds in biological systems. 2020 Dec; 50(12):1469-1482. doi: 10.1080/00498254.2020.1779391. [PMID: 32501182]
  • Sidney Fernandes Sales Junior, Quentin Vallerie, Gabriel de Farias Araujo, Lorena Oliveira Souza Soares, Evelyn Oliveira da Silva, Fábio Veríssimo Correia, Enrico Mendes Saggioro. Triclocarban affects earthworms during long-term exposure: Behavior, cytotoxicity, oxidative stress and genotoxicity assessments. Environmental pollution (Barking, Essex : 1987). 2020 Dec; 267(?):115570. doi: 10.1016/j.envpol.2020.115570. [PMID: 32916435]
  • Manyuan Dong, Peihong Yuan, Yuchen Song, Hehua Lei, Gui Chen, Xuehang Zhu, Fang Wu, Chuan Chen, Caixiang Liu, Zunji Shi, Limin Zhang. In vitro effects of Triclocarban on adipogenesis in murine preadipocyte and human hepatocyte. Journal of hazardous materials. 2020 11; 399(?):122829. doi: 10.1016/j.jhazmat.2020.122829. [PMID: 32531671]
  • Hongna Zhang, Yao Lu, Yanshan Liang, Lilong Jiang, Zongwei Cai. Triclocarban-induced responses of endogenous and xenobiotic metabolism in human hepatic cells: Toxicity assessment based on nontargeted metabolomics approach. Journal of hazardous materials. 2020 06; 392(?):122475. doi: 10.1016/j.jhazmat.2020.122475. [PMID: 32208312]
  • Aijing Li, Taifeng Zhuang, Qingqing Zhu, Maoyong Song, Chunyang Liao, Guibin Jiang. Concentration and distribution of parabens, triclosan, and triclocarban in pregnant woman serum in China. The Science of the total environment. 2020 Mar; 710(?):136390. doi: 10.1016/j.scitotenv.2019.136390. [PMID: 31923695]
  • Gokce Kor-Bicakci, Timothy Abbott, Emine Ubay-Cokgor, Cigdem Eskicioglu. Occurrence and fate of antimicrobial triclocarban and its transformation products in municipal sludge during advanced anaerobic digestion using microwave pretreatment. The Science of the total environment. 2020 Feb; 705(?):135862. doi: 10.1016/j.scitotenv.2019.135862. [PMID: 31818554]
  • Romena Sanglard Silveira, Bruno Alves Rocha, Jairo Lisboa Rodrigues, Fernando Barbosa. Rapid, sensitive and simultaneous determination of 16 endocrine-disrupting chemicals (parabens, benzophenones, bisphenols, and triclocarban) in human urine based on microextraction by packed sorbent combined with liquid chromatography tandem mass spectrometry (MEPS-LC-MS/MS). Chemosphere. 2020 Feb; 240(?):124951. doi: 10.1016/j.chemosphere.2019.124951. [PMID: 31574445]
  • Rajendiran Karthikraj, Sunmi Lee, Kurunthachalam Kannan. Biomonitoring of exposure to bisphenols, benzophenones, triclosan, and triclocarban in pet dogs and cats. Environmental research. 2020 01; 180(?):108821. doi: 10.1016/j.envres.2019.108821. [PMID: 31639656]
  • Traci N Bethea, Amelia K Wesselink, Jennifer Weuve, Michael D McClean, Russ Hauser, Paige L Williams, Xiaoyun Ye, Antonia M Calafat, Donna D Baird, Lauren A Wise. Correlates of exposure to phenols, parabens, and triclocarban in the Study of Environment, Lifestyle and Fibroids. Journal of exposure science & environmental epidemiology. 2020 01; 30(1):117-136. doi: 10.1038/s41370-019-0114-9. [PMID: 30692588]
  • Daniel A Bair, Carolyn G Anderson, Young Chung, Kate M Scow, Roberta Brancher Franco, Sanjai J Parikh. Impact of biochar on plant growth and uptake of ciprofloxacin, triclocarban and triclosan from biosolids. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2020; 55(11):990-1001. doi: 10.1080/03601234.2020.1807264. [PMID: 32877275]
  • Manyuan Dong, Xiaoyi Xu, Qingxia Huang, Hehua Lei, Guangyong Xu, Jianfeng Ma, Emmanuel Hatzakis, Xian Wang, Limin Zhang. Dose-Dependent Effects of Triclocarban Exposure on Lipid Homeostasis in Rats. Chemical research in toxicology. 2019 11; 32(11):2320-2328. doi: 10.1021/acs.chemrestox.9b00316. [PMID: 31576746]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Krishnamoorthi Vimalkumar, Sangeetha Seethappan, Arivalagan Pugazhendhi. Fate of Triclocarban (TCC) in aquatic and terrestrial systems and human exposure. Chemosphere. 2019 Sep; 230(?):201-209. doi: 10.1016/j.chemosphere.2019.04.145. [PMID: 31103866]
  • Jiao Guan, Xin Yan, Yajing Zhao, Jing Lu, Yinhe Sun, Xin Peng. Investigation of the molecular interactions of triclocarban with human serum albumin using multispectroscopies and molecular modeling. Journal of biomolecular structure & dynamics. 2019 08; 37(13):3550-3565. doi: 10.1080/07391102.2018.1520149. [PMID: 30189795]
  • Amira M Aker, Kelly K Ferguson, Zaira Y Rosario, Bhramar Mukherjee, Akram N Alshawabkeh, Antonia M Calafat, José F Cordero, John D Meeker. A repeated measures study of phenol, paraben and Triclocarban urinary biomarkers and circulating maternal hormones during gestation in the Puerto Rico PROTECT cohort. Environmental health : a global access science source. 2019 04; 18(1):28. doi: 10.1186/s12940-019-0459-5. [PMID: 30940137]
  • Ting Zhou, Jiajing Wei, Yufang Su, Zhiyong Hu, Ying Li, Hongfang Yuan, Kai Zhao, Chunyan Liu, Huiping Zhang. Triclocarban at environmentally relevant concentrations induces the endoplasmic reticulum stress in zebrafish. Environmental toxicology. 2019 Mar; 34(3):223-232. doi: 10.1002/tox.22675. [PMID: 30592132]
  • Wentao Li, Wenpeng Zhang, Mengyang Chang, Juan Ren, Wenping Xie, Huiming Chen, Zhenqing Zhang, Xiaomei Zhuang, Guolin Shen, Haishan Li. Metabonomics reveals that triclocarban affects liver metabolism by affecting glucose metabolism, β-oxidation of fatty acids, and the TCA cycle in male mice. Toxicology letters. 2018 Dec; 299(?):76-85. doi: 10.1016/j.toxlet.2018.09.011. [PMID: 30261223]
  • Pahriya Ashrap, Deborah J Watkins, Antonia M Calafat, Xiaoyun Ye, Zaira Rosario, Phil Brown, Carmen M Vélez-Vega, Akram Alshawabkeh, José F Cordero, John D Meeker. Elevated concentrations of urinary triclocarban, phenol and paraben among pregnant women in Northern Puerto Rico: Predictors and trends. Environment international. 2018 12; 121(Pt 1):990-1002. doi: 10.1016/j.envint.2018.08.020. [PMID: 30316544]
  • Jiajing Wei, Ting Zhou, Zhiyong Hu, Ying Li, Hongfang Yuan, Kai Zhao, Huiping Zhang, Chunyan Liu. Effects of triclocarban on oxidative stress and innate immune response in zebrafish embryos. Chemosphere. 2018 Nov; 210(?):93-101. doi: 10.1016/j.chemosphere.2018.06.163. [PMID: 29986228]
  • Jiao Guan, Xin Yan, Yajing Zhao, Yinhe Sun, Xin Peng. Binding studies of triclocarban with bovine serum albumin: Insights from multi-spectroscopy and molecular modeling methods. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2018 Sep; 202(?):1-12. doi: 10.1016/j.saa.2018.04.070. [PMID: 29777928]
  • Bruno Alves Rocha, Anderson Rodrigo Moraes de Oliveira, Fernando Barbosa. A fast and simple air-assisted liquid-liquid microextraction procedure for the simultaneous determination of bisphenols, parabens, benzophenones, triclosan, and triclocarban in human urine by liquid chromatography-tandem mass spectrometry. Talanta. 2018 Jun; 183(?):94-101. doi: 10.1016/j.talanta.2018.02.052. [PMID: 29567194]
  • Rebekah C Kennedy, Russell R Fling, Michael S Robeson, Arnold M Saxton, Liesel G Schneider, John L Darcy, David A Bemis, Ling Zhao, Jiangang Chen. Temporal dynamics of gut microbiota in triclocarban-exposed weaned rats. Environmental science and pollution research international. 2018 May; 25(15):14743-14751. doi: 10.1007/s11356-018-1627-9. [PMID: 29536423]
  • Khang Huynh, Emily Banach, Dawn Reinhold. Transformation, Conjugation, and Sequestration Following the Uptake of Triclocarban by Jalapeno Pepper Plants. Journal of agricultural and food chemistry. 2018 Apr; 66(16):4032-4043. doi: 10.1021/acs.jafc.7b06150. [PMID: 29637774]
  • Amira M Aker, Lauren Johns, Thomas F McElrath, David E Cantonwine, Bhramar Mukherjee, John D Meeker. Associations between maternal phenol and paraben urinary biomarkers and maternal hormones during pregnancy: A repeated measures study. Environment international. 2018 04; 113(?):341-349. doi: 10.1016/j.envint.2018.01.006. [PMID: 29366524]
  • Melissa M Smarr, Masato Honda, Kurunthachalam Kannan, Zhen Chen, Sungduk Kim, Germaine M Buck Louis. Male urinary biomarkers of antimicrobial exposure and bi-directional associations with semen quality parameters. Reproductive toxicology (Elmsford, N.Y.). 2018 04; 77(?):103-108. doi: 10.1016/j.reprotox.2018.02.008. [PMID: 29474822]
  • M Abel-Denee, T Abbott, C Eskicioglu. Using mass struvite precipitation to remove recalcitrant nutrients and micropollutants from anaerobic digestion dewatering centrate. Water research. 2018 04; 132(?):292-300. doi: 10.1016/j.watres.2018.01.004. [PMID: 29334648]
  • Merry Krisdawati Sipahutar, Jittra Piapukiew, Alisa S Vangnai. Efficiency of the formulated plant-growth promoting Pseudomonas fluorescens MC46 inoculant on triclocarban treatment in soil and its effect on Vigna radiata growth and soil enzyme activities. Journal of hazardous materials. 2018 Feb; 344(?):883-892. doi: 10.1016/j.jhazmat.2017.11.046. [PMID: 29190586]
  • Dana L Armstrong, Nuria Lozano, Clifford P Rice, Mark Ramirez, Alba Torrents. Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using benchtop bioreactors. Environmental research. 2018 02; 161(?):17-25. doi: 10.1016/j.envres.2017.10.048. [PMID: 29096316]
  • Archana P Iyer, Jingchuan Xue, Masato Honda, Morgan Robinson, Taha Abdullah Kumosani, Khalid Abulnaja, Kurunthachalam Kannan. Urinary levels of triclosan and triclocarban in several Asian countries, Greece and the USA: Association with oxidative stress. Environmental research. 2018 01; 160(?):91-96. doi: 10.1016/j.envres.2017.09.021. [PMID: 28964967]
  • Nuria Lozano, Clifford P Rice, Mark Ramirez, Alba Torrents. Fate of triclocarban in agricultural soils after biosolid applications. Environmental science and pollution research international. 2018 Jan; 25(1):222-232. doi: 10.1007/s11356-017-0433-0. [PMID: 29027081]
  • Catherine Ley, Lauren Pischel, Julie Parsonnet. Triclosan and triclocarban exposure and thyroid function during pregnancy-A randomized intervention. Reproductive toxicology (Elmsford, N.Y.). 2017 12; 74(?):143-149. doi: 10.1016/j.reprotox.2017.09.005. [PMID: 28939492]
  • Jessica V Ribado, Catherine Ley, Thomas D Haggerty, Ekaterina Tkachenko, Ami S Bhatt, Julie Parsonnet. Household triclosan and triclocarban effects on the infant and maternal microbiome. EMBO molecular medicine. 2017 12; 9(12):1732-1741. doi: 10.15252/emmm.201707882. [PMID: 29030459]
  • Merry Krisdawati Sipahutar, Alisa S Vangnai. Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants. Journal of hazardous materials. 2017 May; 329(?):38-48. doi: 10.1016/j.jhazmat.2017.01.020. [PMID: 28122276]
  • Ling Wei, Pengyun Qiao, Ying Shi, Yan Ruan, Jie Yin, Qingqing Wu, Bing Shao. Triclosan/triclocarban levels in maternal and umbilical blood samples and their association with fetal malformation. Clinica chimica acta; international journal of clinical chemistry. 2017 Mar; 466(?):133-137. doi: 10.1016/j.cca.2016.12.024. [PMID: 28025031]
  • Laura A Geer, Benny F G Pycke, Joshua Waxenbaum, David M Sherer, Ovadia Abulafia, Rolf U Halden. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn, New York. Journal of hazardous materials. 2017 Feb; 323(Pt A):177-183. doi: 10.1016/j.jhazmat.2016.03.028. [PMID: 27156397]
  • Daniel L Villeneuve, Kathleen M Jensen, Jenna E Cavallin, Elizabeth J Durhan, Natàlia Garcia-Reyero, Michael D Kahl, Richard L Leino, Elizabeth A Makynen, Leah C Wehmas, Edward J Perkins, Gerald T Ankley. Effects of the antimicrobial contaminant triclocarban, and co-exposure with the androgen 17β-trenbolone, on reproductive function and ovarian transcriptome of the fathead minnow (Pimephales promelas). Environmental toxicology and chemistry. 2017 01; 36(1):231-242. doi: 10.1002/etc.3531. [PMID: 27312088]
  • Heather A Enright, Miranda J S Falso, Michael A Malfatti, Victoria Lao, Edward A Kuhn, Nicholas Hum, Yilan Shi, Ana Paula Sales, Kurt W Haack, Kristen S Kulp, Bruce A Buchholz, Gabriela G Loots, Graham Bench, Kenneth W Turteltaub. Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model. PloS one. 2017; 12(8):e0181996. doi: 10.1371/journal.pone.0181996. [PMID: 28792966]
  • Susana Barros, Rosa Montes, José Benito Quintana, Rosario Rodil, Jorge M A Oliveira, Miguel M Santos, Teresa Neuparth. Chronic effects of triclocarban in the amphipod Gammarus locusta: Behavioural and biochemical impairment. Ecotoxicology and environmental safety. 2017 Jan; 135(?):276-283. doi: 10.1016/j.ecoenv.2016.10.013. [PMID: 27750095]
  • Jie Yin, Ling Wei, Ying Shi, Jing Zhang, Qingqing Wu, Bing Shao. Chinese population exposure to triclosan and triclocarban as measured via human urine and nails. Environmental geochemistry and health. 2016 Oct; 38(5):1125-1135. doi: 10.1007/s10653-015-9777-x. [PMID: 26497189]
  • Rebekah C Kennedy, Russell R Fling, Michael S Robeson, Arnold M Saxton, Robert L Donnell, John L Darcy, David A Bemis, Jiang Liu, Ling Zhao, Jiangang Chen. Temporal Development of Gut Microbiota in Triclocarban Exposed Pregnant and Neonatal Rats. Scientific reports. 2016 09; 6(?):33430. doi: 10.1038/srep33430. [PMID: 27646684]
  • Lan-jun Wang, Jin-hua Wang, Lu-sheng Zhu, Jun Wang, Xiang Zhao. [Influence of Four Kinds of PPCPs on Micronucleus Rate of the Root-Tip Cells of Vicia-faba and Garlic]. Huan jing ke xue= Huanjing kexue. 2016 Apr; 37(4):1568-75. doi: ". [PMID: 27548984]
  • Catherine Ley, Maria de la Luz Sanchez, Ankur Mathur, Shufang Yang, Vandana Sundaram, Julie Parsonnet. Stanford's Outcomes Research in Kids (STORK): a prospective study of healthy pregnant women and their babies in Northern California. BMJ open. 2016 Apr; 6(4):e010810. doi: 10.1136/bmjopen-2015-010810. [PMID: 27075843]
  • Xiaoqin Wu, Qiuguo Fu, Jay Gan. Metabolism of pharmaceutical and personal care products by carrot cell cultures. Environmental pollution (Barking, Essex : 1987). 2016 Apr; 211(?):141-7. doi: 10.1016/j.envpol.2015.12.050. [PMID: 26745399]
  • Qiuguo Fu, Edmond Sanganyado, Qingfu Ye, Jay Gan. Meta-analysis of biosolid effects on persistence of triclosan and triclocarban in soil. Environmental pollution (Barking, Essex : 1987). 2016 Mar; 210(?):137-44. doi: 10.1016/j.envpol.2015.12.003. [PMID: 26708768]
  • Li Gao, Tao Yuan, Peng Cheng, Qifeng Bai, Chuanqi Zhou, Junjie Ao, Wenhua Wang, Haimou Zhang. Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of Tetrahymena thermophila. Chemosphere. 2015 Nov; 139(?):434-40. doi: 10.1016/j.chemosphere.2015.07.059. [PMID: 26246462]
  • Rebekah C Kennedy, Russell R Fling, Paul D Terry, Fu-Min Menn, Jiangang Chen, Christopher J Borman. Extraction of 3,4,4'-Trichlorocarbanilide from Rat Fecal Samples for Determination by High Pressure Liquid Chromatography-Tandem Mass Spectrometry. International journal of environmental research and public health. 2015 Jul; 12(7):8125-32. doi: 10.3390/ijerph120708125. [PMID: 26184276]
  • Naho Garvin, William J Doucette, Jason C White. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method. Chemosphere. 2015 Jul; 130(?):98-102. doi: 10.1016/j.chemosphere.2014.11.075. [PMID: 25537866]
  • R S Prosser, L Lissemore, R S Shahmohamadloo, P K Sibley. Effect of biosolids-derived triclosan and triclocarban on the colonization of plant roots by arbuscular mycorrhizal fungi. The Science of the total environment. 2015 Mar; 508(?):427-34. doi: 10.1016/j.scitotenv.2014.12.014. [PMID: 25497682]
  • Natasha A Andrade, Nuria Lozano, Laura L McConnell, Alba Torrents, Clifford P Rice, Mark Ramirez. Long-term trends of PBDEs, triclosan, and triclocarban in biosolids from a wastewater treatment plant in the Mid-Atlantic region of the US. Journal of hazardous materials. 2015 Jan; 282(?):68-74. doi: 10.1016/j.jhazmat.2014.09.028. [PMID: 25282513]
  • Rebekah C M Kennedy, Fu-Min Menn, Laura Healy, Kellie A Fecteau, Pan Hu, Jiyoung Bae, Nancy A Gee, Bill L Lasley, Ling Zhao, Jiangang Chen. Early life triclocarban exposure during lactation affects neonate rat survival. Reproductive sciences (Thousand Oaks, Calif.). 2015 Jan; 22(1):75-89. doi: 10.1177/1933719114532844. [PMID: 24803507]
  • Rebecca K Moos, Jürgen Angerer, Jürgen Wittsiepe, Michael Wilhelm, Thomas Brüning, Holger M Koch. Rapid determination of nine parabens and seven other environmental phenols in urine samples of German children and adults. International journal of hygiene and environmental health. 2014 Nov; 217(8):845-53. doi: 10.1016/j.ijheh.2014.06.003. [PMID: 25008406]
  • Ryan S Prosser, Stefan Trapp, Paul K Sibley. Modeling uptake of selected pharmaceuticals and personal care products into food crops from biosolids-amended soil. Environmental science & technology. 2014 Oct; 48(19):11397-404. doi: 10.1021/es503067v. [PMID: 25207852]
  • Ryan S Prosser, Linda Lissemore, Keith R Solomon, Paul K Sibley. Toxicity of biosolids-derived triclosan and triclocarban to six crop species. Environmental toxicology and chemistry. 2014 Aug; 33(8):1840-8. doi: 10.1002/etc.2624. [PMID: 24764246]
  • Alexandros G Asimakopoulos, Nikolaos S Thomaidis, Kurunthachalam Kannan. Widespread occurrence of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters (parabens), benzophenone type-UV filters, triclosan, and triclocarban in human urine from Athens, Greece. The Science of the total environment. 2014 Feb; 470-471(?):1243-9. doi: 10.1016/j.scitotenv.2013.10.089. [PMID: 24246946]
  • Feng Chen, Guang-Guo Ying, Yi-Bing Ma, Zhi-Feng Chen, Hua-Jie Lai, Feng-Jiao Peng. Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils. The Science of the total environment. 2014 Feb; 470-471(?):1078-86. doi: 10.1016/j.scitotenv.2013.10.080. [PMID: 24239829]
  • Alexandros G Asimakopoulos, Lei Wang, Nikolaos S Thomaidis, Kurunthachalam Kannan. A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, triclosan, and triclocarban in human urine by liquid chromatography-tandem mass spectrometry. Journal of chromatography. A. 2014 Jan; 1324(?):141-8. doi: 10.1016/j.chroma.2013.11.031. [PMID: 24315674]
  • Benny F G Pycke, Laura A Geer, Mudar Dalloul, Ovadia Abulafia, Alizee M Jenck, Rolf U Halden. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York. Environmental science & technology. 2014; 48(15):8831-8. doi: 10.1021/es501100w. [PMID: 24971846]
  • Nuria Lozano, Natasha A Andrade, Di Deng, Alba Torrents, Clifford P Rice, Laura L McConnell, Mark Ramirez, Patricia D Millner. Fate of microconstituents in biosolids composted in an aerated silage bag. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering. 2014; 49(6):720-30. doi: 10.1080/10934529.2014.865461. [PMID: 24521417]
  • Xi-Kui Wang, Xia-Jie Jiang, Yi-Nan Wang, Jing Sun, Chen Wang, Ting-Ting Shen. Occurrence, distribution, and multi-phase partitioning of triclocarban and triclosan in an urban river receiving wastewater treatment plants effluent in China. Environmental science and pollution research international. 2014; 21(11):7065-74. doi: 10.1007/s11356-014-2617-1. [PMID: 24535666]
  • Xiaoqin Wu, Frederick Ernst, Jeremy L Conkle, Jay Gan. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environment international. 2013 Oct; 60(?):15-22. doi: 10.1016/j.envint.2013.07.015. [PMID: 23973619]
  • Niroj Aryal, Dawn Reinhold. Phytoaccumulation of antimicrobials by hydroponic Cucurbita pepo. International journal of phytoremediation. 2013; 15(4):330-42. doi: 10.1080/15226514.2012.702802. [PMID: 23487999]
  • Chenxi Wu, Alison L Spongberg, Jason D Witter, B B Maruthi Sridhar. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil. Ecotoxicology and environmental safety. 2012 Nov; 85(?):104-9. doi: 10.1016/j.ecoenv.2012.08.007. [PMID: 22921256]
  • André Macherius, Trine Eggen, Wilhelm Lorenz, Monika Moeder, Jelka Ondruschka, Thorsten Reemtsma. Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment. Environmental science & technology. 2012 Oct; 46(19):10797-804. doi: 10.1021/es3028378. [PMID: 22989227]
  • Melissa M Schultz, Stephen E Bartell, Heiko L Schoenfuss. Effects of triclosan and triclocarban, two ubiquitous environmental contaminants, on anatomy, physiology, and behavior of the fathead minnow (Pimephales promelas). Archives of environmental contamination and toxicology. 2012 Jul; 63(1):114-24. doi: 10.1007/s00244-011-9748-x. [PMID: 22237462]
  • Frederick M Zarate, Sarah E Schulwitz, Kevin J Stevens, Barney J Venables. Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland. Chemosphere. 2012 Jul; 88(3):323-9. doi: 10.1016/j.chemosphere.2012.03.005. [PMID: 22483729]
  • P J Phillips, A T Chalmers, J L Gray, D W Kolpin, W T Foreman, G R Wall. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants. Environmental science & technology. 2012 May; 46(10):5336-43. doi: 10.1021/es3001294. [PMID: 22540536]
  • Nils Helge Schebb, Ki Chang Ahn, Hua Dong, Shirley J Gee, Bruce D Hammock. Whole blood is the sample matrix of choice for monitoring systemic triclocarban levels. Chemosphere. 2012 May; 87(7):825-7. doi: 10.1016/j.chemosphere.2011.12.077. [PMID: 22273184]
  • Xiaoliu Zhou, Xiaoyun Ye, Antonia M Calafat. Automated on-line column-switching HPLC-MS/MS method for the quantification of triclocarban and its oxidative metabolites in human urine and serum. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2012 Jan; 881-882(?):27-33. doi: 10.1016/j.jchromb.2011.11.024. [PMID: 22192874]
  • Ki Chang Ahn, Takeo Kasagami, Hsing-Ju Tsai, Nils Helge Schebb, Temitope Ogunyoku, Shirley J Gee, Thomas M Young, Bruce D Hammock. An immunoassay to evaluate human/environmental exposure to the antimicrobial triclocarban. Environmental science & technology. 2012 Jan; 46(1):374-81. doi: 10.1021/es202494d. [PMID: 22077920]
  • N H Schebb, B Franze, R Maul, A Ranganathan, B D Hammock. In vitro glucuronidation of the antibacterial triclocarban and its oxidative metabolites. Drug metabolism and disposition: the biological fate of chemicals. 2012 Jan; 40(1):25-31. doi: 10.1124/dmd.111.042283. [PMID: 21953915]
  • Niroj Aryal, Dawn M Reinhold. Phytoaccumulation of antimicrobials from biosolids: impacts on environmental fate and relevance to human exposure. Water research. 2011 Nov; 45(17):5545-52. doi: 10.1016/j.watres.2011.08.027. [PMID: 21903237]
  • Sofia Tabares-da Rosa, Martin Rossotti, Carmen Carleiza, Federico Carrión, Otto Pritsch, Ki Chang Ahn, Jerold A Last, Bruce D Hammock, Gualberto González-Sapienza. Competitive selection from single domain antibody libraries allows isolation of high-affinity antihapten antibodies that are not favored in the llama immune response. Analytical chemistry. 2011 Sep; 83(18):7213-20. doi: 10.1021/ac201824z. [PMID: 21827167]
  • Jun-Yan Liu, Hong Qiu, Christophe Morisseau, Sung Hee Hwang, Hsing-Ju Tsai, Arzu Ulu, Nipavan Chiamvimonvat, Bruce D Hammock. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model. Toxicology and applied pharmacology. 2011 Sep; 255(2):200-6. doi: 10.1016/j.taap.2011.06.017. [PMID: 21741984]
  • Xiaoyun Ye, Xiaoliu Zhou, Johnathan Furr, Ki Chang Ahn, Bruce D Hammock, Earl L Gray, Antonia M Calafat. Biomarkers of exposure to triclocarban in urine and serum. Toxicology. 2011 Aug; 286(1-3):69-74. doi: 10.1016/j.tox.2011.05.008. [PMID: 21635932]
  • Mario Orsi, Massimo G Noro, Jonathan W Essex. Dual-resolution molecular dynamics simulation of antimicrobials in biomembranes. Journal of the Royal Society, Interface. 2011 Jun; 8(59):826-41. doi: 10.1098/rsif.2010.0541. [PMID: 21131331]
  • Joon-Woo Kim, Babu Rajendran Ramaswamy, Kwang-Hyeon Chang, Tomohiko Isobe, Shinsuke Tanabe. Multiresidue analytical method for the determination of antimicrobials, preservatives, benzotriazole UV stabilizers, flame retardants and plasticizers in fish using ultra high performance liquid chromatography coupled with tandem mass spectrometry. Journal of chromatography. A. 2011 Jun; 1218(22):3511-20. doi: 10.1016/j.chroma.2011.04.006. [PMID: 21531423]