Chromanol 293B (BioDeep_00000016803)

   


代谢物信息卡片


Chromanol 293B

化学式: C15H20N2O4S (324.1144)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCS(=O)(=O)N(C)C1C(C(OC2=C1C=C(C=C2)C#N)(C)C)O
InChI: InChI=1S/C15H20N2O4S/c1-5-22(19,20)17(4)13-11-8-10(9-16)6-7-12(11)21-15(2,3)14(13)18/h6-8,13-14,18H,5H2,1-4H3/t13-,14+/m0/s1

描述信息

D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers
D049990 - Membrane Transport Modulators

同义名列表

2 个代谢物同义名

Chromanol 293B; Chromanol 293B



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Nobuo Aikawa, Yui Suzuki, Katsumi Takaba. A Simple Protocol for the Myocardial Differentiation of Human iPS Cells. Biological & pharmaceutical bulletin. 2015; 38(7):1070-5. doi: 10.1248/bpb.b14-00761. [PMID: 26133717]
  • Lijie Liu, Fanfan Wang, Haiying Lu, Xiaomei Ren, Jihong Zou. Chromanol 293B, an inhibitor of KCNQ1 channels, enhances glucose-stimulated insulin secretion and increases glucagon-like peptide-1 level in mice. Islets. 2014; 6(4):e962386. doi: 10.4161/19382014.2014.962386. [PMID: 25437377]
  • A M Neal, H C Taylor, I D Millar, J D Kibble, S J White, L Robson. Renal defects in KCNE1 knockout mice are mimicked by chromanol 293B in vivo: identification of a KCNE1-regulated K+ conductance in the proximal tubule. The Journal of physiology. 2011 Jul; 589(Pt 14):3595-609. doi: 10.1113/jphysiol.2011.209155. [PMID: 21576273]
  • Christophe Duranton, Isabelle Rubera, Sebastien L'hoste, Marc Cougnon, Philippe Poujeol, Jacques Barhanin, Michel Tauc. KCNQ1 K+ channels are involved in lipopolysaccharide-induced apoptosis of distal kidney cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2010; 25(4-5):367-78. doi: 10.1159/000303041. [PMID: 20332617]
  • Dusan Cemerikic, Jelena Nesovic-Ostojic, Dusan Popadic, Aleksandra Knezevic, Simon Dragovic, Aleksandar Milovanovic, Jovica Milovanovic. Absence of KCNQ1-dependent K+ fluxes in proximal tubular cells of frog kidney. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 2007 Nov; 148(3):635-44. doi: 10.1016/j.cbpa.2007.08.010. [PMID: 17869561]
  • Ming-Qing Dong, Chu-Pak Lau, Zhan Gao, Gea-Ny Tseng, Gui-Rong Li. Characterization of recombinant human cardiac KCNQ1/KCNE1 channels (I (Ks)) stably expressed in HEK 293 cells. The Journal of membrane biology. 2006 Apr; 210(3):183-92. doi: 10.1007/s00232-006-0006-5. [PMID: 16909339]
  • Jelena Nesović, Dusan Cemerikić. Characterization of luminal and peritubular membrane K+ selectivity in proximal tubular cells of frog kidney. Annals of the New York Academy of Sciences. 2005 Jun; 1048(?):441-4. doi: 10.1196/annals.1342.059. [PMID: 16154972]
  • T V Pham, E A Sosunov, R Z Gainullin, P Danilo, M R Rosen. Impact of sex and gonadal steroids on prolongation of ventricular repolarization and arrhythmias induced by I(K)-blocking drugs. Circulation. 2001 May; 103(17):2207-12. doi: 10.1161/01.cir.103.17.2207. [PMID: 11331264]