Undecaprenyl diphosphate (BioDeep_00000014424)

Main id: BioDeep_00000005572

 

human metabolite Endogenous


代谢物信息卡片


{[hydroxy({[(2E,6E,10E,14E,18E,22E,26E,30E,34E,38E)-3,7,11,15,19,23,27,31,35,39,43-undecamethyltetratetraconta-2,6,10,14,18,22,26,30,34,38,42-undecaen-1-yl]oxy})phosphoryl]oxy}phosphonic acid

化学式: C55H92O7P2 (926.6317942)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCCC(=CCOP(=O)(O)OP(=O)(O)O)C)C)C)C)C)C)C)C)C)C)C
InChI: InChI=1S/C55H92O7P2/c1-45(2)23-13-24-46(3)25-14-26-47(4)27-15-28-48(5)29-16-30-49(6)31-17-32-50(7)33-18-34-51(8)35-19-36-52(9)37-20-38-53(10)39-21-40-54(11)41-22-42-55(12)43-44-61-64(59,60)62-63(56,57)58/h23,25,27,29,31,33,35,37,39,41,43H,13-22,24,26,28,30,32,34,36,38,40,42,44H2,1-12H3,(H,59,60)(H2,56,57,58)/b46-25+,47-27+,48-29+,49-31+,50-33+,51-35+,52-37+,53-39+,54-41+,55-43+

描述信息

It is noteworthy that in spite of the similarity of the reactions catalyzed by these prenyltransferases, the modes of expression of catalytic function are surprisingly different, varying according to the chain length and stereochemistry of reaction products. These enzymes are summarized and classified into four groups, as shown in Figure 13. Short-chain prenyl diphosphates synthases such as FPP and GGPP synthases require no cofactor except divalent metal ions, Mg2+ or Mn2+, which are commonly required by all prenyl diphosphate synthases. Medium-chain prenyl diphosphate synthases, including the enzymes for the synthesis of all-E-HexPP and all-E-HepPP, are unusual because they each consist of two dissociable dissimilar protein components, neither of which has catalytic activity. The enzymes for the synthesis of long-chain all-E-prenyl diphosphates, including octaprenyl (C40), nonaprenyl-(C45), and decaprenyl (C50) diphosphates, require polyprenyl carrier proteins that remove polyprenyl products from the active sites of the enzymes to maintain efficient turnovers of catalysis. The enzymes responsible for Z-chain elongation include Z,E-nonaprenyl-(C45) and Z,E-undecaprenyl (C55) diphosphate synthases, which require a phospholipid. The classification of mammalian synthases seems to be fundamentally similar to that of bacterial synthases except that no medium-chain prenyl diphosphate synthases are included. The Z-prenyl diphosphate synthase in mammalian cells is dehydrodolichyl PP synthase, which catalyzes much longer chain elongations than do bacterial enzymes. Dehydrodolichyl PP synthase will be a major target of future studies in this field in view of its involvement in glycoprotein biosynthesis. PMID: 9090291 [HMDB]
It is noteworthy that in spite of the similarity of the reactions catalyzed by these prenyltransferases, the modes of expression of catalytic function are surprisingly different, varying according to the chain length and stereochemistry of reaction products. These enzymes are summarized and classified into four groups, as shown in Figure 13. Short-chain prenyl diphosphates synthases such as FPP and GGPP synthases require no cofactor except divalent metal ions, Mg2+ or Mn2+, which are commonly required by all prenyl diphosphate synthases. Medium-chain prenyl diphosphate synthases, including the enzymes for the synthesis of all-E-HexPP and all-E-HepPP, are unusual because they each consist of two dissociable dissimilar protein components, neither of which has catalytic activity. The enzymes for the synthesis of long-chain all-E-prenyl diphosphates, including octaprenyl (C40), nonaprenyl-(C45), and decaprenyl (C50) diphosphates, require polyprenyl carrier proteins that remove polyprenyl products from the active sites of the enzymes to maintain efficient turnovers of catalysis. The enzymes responsible for Z-chain elongation include Z,E-nonaprenyl-(C45) and Z,E-undecaprenyl (C55) diphosphate synthases, which require a phospholipid. The classification of mammalian synthases seems to be fundamentally similar to that of bacterial synthases except that no medium-chain prenyl diphosphate synthases are included. The Z-prenyl diphosphate synthase in mammalian cells is dehydrodolichyl PP synthase, which catalyzes much longer chain elongations than do bacterial enzymes. Dehydrodolichyl PP synthase will be a major target of future studies in this field in view of its involvement in glycoprotein biosynthesis. PMID: 9090291.

同义名列表

12 个代谢物同义名

{[hydroxy({[(2E,6E,10E,14E,18E,22E,26E,30E,34E,38E)-3,7,11,15,19,23,27,31,35,39,43-undecamethyltetratetraconta-2,6,10,14,18,22,26,30,34,38,42-undecaen-1-yl]oxy})phosphoryl]oxy}phosphonic acid; Diphosphoric acid, mono(3,7,11,15,19,23,27,31,35,39,43-undecamethyl-2,6,10,14,18,22,26,30,34,38,42-tetratetracontaundecaenyl) ester; Diphosphoric acid mono(3,7,11,15,19,23,27,31,35,39,43-undecamethyl-2,6,10,14,18,22,26,30,34,38,42-tetratetracontaundecaenyl) ester; Diphosphate, mono(3,7,11,15,19,23,27,31,35,39,43-undecamethyl-2,6,10,14,18,22,26,30,34,38,42-tetratetracontaundecaenyl) ester; Undecaprenyl pyrophosphoric acid; Undecaprenyl diphosphoric acid; Undecaprenyl pyrophosphate; Bactoprenyl pyrophosphate; undecaprenyl diphosphate; Undecaprenyl-PP; UndPP; UPP



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

5 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(4)

  • Peptidoglycan Biosynthesis I: Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
  • Peptidoglycan Biosynthesis II: Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
  • Peptidoglycan Biosynthesis I: Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
  • Peptidoglycan Biosynthesis II: Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Elisabeth Reithuber, Torbjörn Wixe, Kevin C Ludwig, Anna Müller, Hanna Uvell, Fabian Grein, Anders E G Lindgren, Sandra Muschiol, Priyanka Nannapaneni, Anna Eriksson, Tanja Schneider, Staffan Normark, Birgitta Henriques-Normark, Fredrik Almqvist, Peter Mellroth. THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediates. Proceedings of the National Academy of Sciences of the United States of America. 2021 11; 118(47):. doi: 10.1073/pnas.2108244118. [PMID: 34785593]
  • Matthew A Jorgenson, Joseph C Bryant. A genetic screen to identify factors affected by undecaprenyl phosphate recycling uncovers novel connections to morphogenesis in Escherichia coli. Molecular microbiology. 2021 02; 115(2):191-207. doi: 10.1111/mmi.14609. [PMID: 32979869]
  • Elise Gasiorowski, Rodolphe Auger, Xudong Tian, Samia Hicham, Chantal Ecobichon, Sophie Roure, Martin V Douglass, M Stephen Trent, Dominique Mengin-Lecreulx, Thierry Touzé, Ivo Gomperts Boneca. HupA, the main undecaprenyl pyrophosphate and phosphatidylglycerol phosphate phosphatase in Helicobacter pylori is essential for colonization of the stomach. PLoS pathogens. 2019 09; 15(9):e1007972. doi: 10.1371/journal.ppat.1007972. [PMID: 31487328]
  • Jinshi Zhao, Jinsu An, Dohyeon Hwang, Qinglin Wu, Su Wang, Robert A Gillespie, Eun Gyeong Yang, Ziqiang Guan, Pei Zhou, Hak Suk Chung. The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis. mBio. 2019 06; 10(3):. doi: 10.1128/mbio.00886-19. [PMID: 31213552]
  • Manish Kesherwani, Devadasan Velmurugan. Molecular insights into substrate binding mechanism of undecaprenyl pyrophosphate with membrane integrated phosphatidyl glycerophosphate phosphatase B (PgpB) using molecular dynamics simulation approach. Journal of biomolecular structure & dynamics. 2019 Mar; 37(4):1062-1089. doi: 10.1080/07391102.2018.1449666. [PMID: 29528805]
  • William J MacCain, Suresh Kannan, Dannah Z Jameel, Jerry M Troutman, Kevin D Young. A Defective Undecaprenyl Pyrophosphate Synthase Induces Growth and Morphological Defects That Are Suppressed by Mutations in the Isoprenoid Pathway of Escherichia coli. Journal of bacteriology. 2018 09; 200(18):. doi: 10.1128/jb.00255-18. [PMID: 29986944]
  • Sean D Workman, Liam J Worrall, Natalie C J Strynadka. Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling. Nature communications. 2018 03; 9(1):1159. doi: 10.1038/s41467-018-03547-8. [PMID: 29559664]
  • Heng Zhao, Yingjie Sun, Jason M Peters, Carol A Gross, Ethan C Garner, John D Helmann. Depletion of Undecaprenyl Pyrophosphate Phosphatases Disrupts Cell Envelope Biogenesis in Bacillus subtilis. Journal of bacteriology. 2016 11; 198(21):2925-2935. doi: 10.1128/jb.00507-16. [PMID: 27528508]
  • Lei Li, Robert L Woodward, Weiqing Han, Jingyao Qu, Jing Song, Cheng Ma, Peng G Wang. Chemoenzymatic synthesis of the bacterial polysaccharide repeating unit undecaprenyl pyrophosphate and its analogs. Nature protocols. 2016 07; 11(7):1280-98. doi: 10.1038/nprot.2016.067. [PMID: 27336706]
  • Guillaume Manat, Sophie Roure, Rodolphe Auger, Ahmed Bouhss, Hélène Barreteau, Dominique Mengin-Lecreulx, Thierry Touzé. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microbial drug resistance (Larchmont, N.Y.). 2014 Jun; 20(3):199-214. doi: 10.1089/mdr.2014.0035. [PMID: 24799078]
  • Nicoleta J Economou, Simon Cocklin, Patrick J Loll. High-resolution crystal structure reveals molecular details of target recognition by bacitracin. Proceedings of the National Academy of Sciences of the United States of America. 2013 Aug; 110(35):14207-12. doi: 10.1073/pnas.1308268110. [PMID: 23940351]
  • Laura K Greenfield, Michele R Richards, Jianjun Li, Warren W Wakarchuk, Todd L Lowary, Chris Whitfield. Biosynthesis of the polymannose lipopolysaccharide O-antigens from Escherichia coli serotypes O8 and O9a requires a unique combination of single- and multiple-active site mannosyltransferases. The Journal of biological chemistry. 2012 Oct; 287(42):35078-35091. doi: 10.1074/jbc.m112.401000. [PMID: 22875852]
  • Hideki Hashizume, Ryuichi Sawa, Shigeko Harada, Masayuki Igarashi, Hayamitsu Adachi, Yoshio Nishimura, Akio Nomoto. Tripropeptin C blocks the lipid cycle of cell wall biosynthesis by complex formation with undecaprenyl pyrophosphate. Antimicrobial agents and chemotherapy. 2011 Aug; 55(8):3821-8. doi: 10.1128/aac.00443-11. [PMID: 21628543]
  • Isabelle Hug, Mario F Feldman. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology. 2011 Feb; 21(2):138-51. doi: 10.1093/glycob/cwq148. [PMID: 20871101]
  • Ahmed Bouhss, Bayan Al-Dabbagh, Michel Vincent, Benoit Odaert, Magalie Aumont-Nicaise, Philippe Bressolier, Michel Desmadril, Dominique Mengin-Lecreulx, Maria C Urdaci, Jacques Gallay. Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall. Biophysical journal. 2009 Sep; 97(5):1390-7. doi: 10.1016/j.bpj.2009.06.029. [PMID: 19720027]
  • Hélène Barreteau, Sophie Magnet, Meriem El Ghachi, Thierry Touzé, Michel Arthur, Dominique Mengin-Lecreulx, Didier Blanot. Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2009 Jan; 877(3):213-20. doi: 10.1016/j.jchromb.2008.12.010. [PMID: 19110475]
  • Amirreza Faridmoayer, Messele A Fentabil, M Florencia Haurat, Wen Yi, Robert Woodward, Peng George Wang, Mario F Feldman. Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. The Journal of biological chemistry. 2008 Dec; 283(50):34596-604. doi: 10.1074/jbc.m807113200. [PMID: 18930921]
  • Inka Brockhausen, Bo Hu, Bin Liu, Kenneth Lau, Walter A Szarek, Lei Wang, Lu Feng. Characterization of two beta-1,3-glucosyltransferases from Escherichia coli serotypes O56 and O152. Journal of bacteriology. 2008 Jul; 190(14):4922-32. doi: 10.1128/jb.00160-08. [PMID: 18487334]
  • Ahmed Bouhss, Amy E Trunkfield, Timothy D H Bugg, Dominique Mengin-Lecreulx. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS microbiology reviews. 2008 Mar; 32(2):208-33. doi: 10.1111/j.1574-6976.2007.00089.x. [PMID: 18081839]
  • Makoto Kuroda, Sanae Nagasaki, Toshiko Ohta. Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. The Journal of antimicrobial chemotherapy. 2007 Mar; 59(3):425-32. doi: 10.1093/jac/dkl519. [PMID: 17242033]
  • Meriem El Ghachi, Anne Derbise, Ahmed Bouhss, Dominique Mengin-Lecreulx. Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. The Journal of biological chemistry. 2005 May; 280(19):18689-95. doi: 10.1074/jbc.m412277200. [PMID: 15778224]
  • Annie P-C Chen, Sing-Yang Chang, Yu-Chung Lin, Yang-Sheng Sun, Chao-Tsen Chen, Andrew H-J Wang, Po-Huang Liang. Substrate and product specificities of cis-type undecaprenyl pyrophosphate synthase. The Biochemical journal. 2005 Feb; 386(Pt 1):169-76. doi: 10.1042/bj20040785. [PMID: 15447632]
  • Boyan B Bonev, Eefjan Breukink, E Swiezewska, Ben De Kruijff, Anthony Watts. Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2004 Dec; 18(15):1862-9. doi: 10.1096/fj.04-2358com. [PMID: 15576489]
  • L Wang, P R Reeves. Involvement of the galactosyl-1-phosphate transferase encoded by the Salmonella enterica rfbP gene in O-antigen subunit processing. Journal of bacteriology. 1994 Jul; 176(14):4348-56. doi: 10.1128/jb.176.14.4348-4356.1994. [PMID: 7517393]