2-IMINIOPROPANOATE (BioDeep_00000013721)
Main id: BioDeep_00000173322
代谢物信息卡片
化学式: C3H5NO2 (87.032)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CC(=N)C(=O)O
InChI: InChI=1S/C3H5NO2/c1-2(4)3(5)6/h4H,1H3,(H,5,6)
数据库引用编号
10 个数据库交叉引用编号
- ChEBI: CHEBI:44400
- ChEBI: CHEBI:76608
- KEGG: C20904
- PubChem: 5288980
- DrugBank: DB04212
- MetaCyc: CPD-16015
- CAS: 3125-84-6
- PMhub: MS000028256
- PubChem: 254741367
- PDB-CCD: NAK
分类词条
相关代谢途径
Reactome(0)
BioCyc(8)
- superpathway of L-methionine biosynthesis (transsulfuration)
- superpathway of L-homoserine and L-methionine biosynthesis
- L-methionine biosynthesis I
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I
- aspartate superpathway
- superpathway of S-adenosyl-L-methionine biosynthesis
- glycine betaine degradation I
- purine nucleobases degradation II (anaerobic)
PlantCyc(0)
代谢反应
91 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(42)
- superpathway of L-methionine biosynthesis (transsulfuration):
L-homocysteine + a 5-methyltetrahydrofolate ⟶ a tetrahydrofolate + met
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glutathione-mediated detoxification I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-tryptophan degradation II (via pyruvate):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glycine betaine degradation I:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- purine nucleobases degradation II (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- L-methionine biosynthesis II (plants):
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- superpathway of L-homoserine and L-methionine biosynthesis:
L-homocysteine + a 5-methyltetrahydrofolate ⟶ a tetrahydrofolate + met
- L-methionine biosynthesis I:
L-homocysteine + a 5-methyltetrahydrofolate ⟶ a tetrahydrofolate + met
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I:
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- glutathione-mediated detoxification I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
cys ⟶ 2-aminoprop-2-enoate + hydrogen sulfide
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- aspartate superpathway:
ATP + L-homoserine ⟶ ADP + H+ + O-phospho-L-homoserine
- superpathway of S-adenosyl-L-methionine biosynthesis:
ATP + H2O + met ⟶ SAM + diphosphate + phosphate
- superpathway of S-adenosyl-L-methionine biosynthesis:
ATP + asp ⟶ ADP + L-aspartyl-4-phosphate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I:
2-oxoglutarate + asp ⟶ glu + oxaloacetate
- L-tryptophan degradation II (via pyruvate):
trp ⟶ 2-aminoprop-2-enoate + indole
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- aspartate superpathway:
O2 + asp ⟶ 2-iminosuccinate + H+ + hydrogen peroxide
- superpathway of L-homoserine and L-methionine biosynthesis:
ATP + asp ⟶ ADP + L-aspartyl-4-phosphate
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- glycine betaine degradation I:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of S-adenosyl-L-methionine biosynthesis:
L-aspartate 4-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- L-cysteine degradation II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis I:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-homoserine and L-methionine biosynthesis:
L-aspartate 4-semialdehyde + NADP+ + phosphate ⟶ H+ + L-aspartyl-4-phosphate + NADPH
- L-serine degradation:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(49)
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Hankuil Yi, Matthew Juergens, Joseph M Jez. Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants.
The Plant cell.
2012 Jun; 24(6):2696-706. doi:
10.1105/tpc.112.098954
. [PMID: 22739827] - Ian M Gut, Steven R Blanke, Wilfred A van der Donk. Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin.
ACS chemical biology.
2011 Jul; 6(7):744-52. doi:
10.1021/cb1004178
. [PMID: 21517116] - Arthur J L Cooper, Boris F Krasnikov, Zoya V Niatsetskaya, John T Pinto, Patrick S Callery, Maria T Villar, Antonio Artigues, Sam A Bruschi. Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents.
Amino acids.
2011 Jun; 41(1):7-27. doi:
10.1007/s00726-010-0552-0
. [PMID: 20306345] - Jakub Krijt, Jana Kopecká, Aleš Hnízda, Stuart Moat, Leo A J Kluijtmans, Philip Mayne, Viktor Kožich. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.
Journal of inherited metabolic disease.
2011 Feb; 34(1):49-55. doi:
10.1007/s10545-010-9178-3
. [PMID: 20821054] - Trent J Oman, Wilfred A van der Donk. Insights into the mode of action of the two-peptide lantibiotic haloduracin.
ACS chemical biology.
2009 Oct; 4(10):865-74. doi:
10.1021/cb900194x
. [PMID: 19678697] - Paula M T Ferreira, Luis S Monteiro, T Coban, S Suzen. Comparative effect of N-substituted dehydroamino acids and alpha-tocopherol on rat liver lipid peroxidation activities.
Journal of enzyme inhibition and medicinal chemistry.
2009 Aug; 24(4):967-71. doi:
10.1080/14756360802561162
. [PMID: 19555173] - Denis E Corpet, Sylviane Taché, Michael C Archer, W Robert Bruce. Dehydroalanine and lysinoalanine in thermolyzed casein do not promote colon cancer in the rat.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2008 Sep; 46(9):3037-42. doi:
10.1016/j.fct.2008.06.002
. [PMID: 18585427] - Shi-Jian Ding, John Carr, James E Carlson, Larry Tong, Weihua Xue, Yifeng Li, Lawrence M Schopfer, Bin Li, Florian Nachon, Oluwatoyin Asojo, Charles M Thompson, Steven H Hinrichs, Patrick Masson, Oksana Lockridge. Five tyrosines and two serines in human albumin are labeled by the organophosphorus agent FP-biotin.
Chemical research in toxicology.
2008 Sep; 21(9):1787-94. doi:
10.1021/tx800144z
. [PMID: 18707141] - Raphael Bar-Or, Leonard T Rael, David Bar-Or. Dehydroalanine derived from cysteine is a common post-translational modification in human serum albumin.
Rapid communications in mass spectrometry : RCM.
2008; 22(5):711-6. doi:
10.1002/rcm.3421
. [PMID: 18265430] - Eileen B O'Connor, Paul D Cotter, Paula O'Connor, Orla O'Sullivan, John R Tagg, R Paul Ross, Colin Hill. Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity.
BMC microbiology.
2007 Apr; 7(?):24. doi:
10.1186/1471-2180-7-24
. [PMID: 17407564] - Pia Hønnerup Jensen, Inga Laursen, Finn Matthiesen, Peter Højrup. Posttranslational modifications in human plasma MBL and human recombinant MBL.
Biochimica et biophysica acta.
2007 Mar; 1774(3):335-44. doi:
10.1016/j.bbapap.2006.12.008
. [PMID: 17289451] - Sibel Suzen, Gokce Gurkok, Tulay Coban. Novel N-acyl dehydroalanine derivatives as antioxidants: studies on rat liver lipid peroxidation levels and DPPH free radical scavenging activity.
Journal of enzyme inhibition and medicinal chemistry.
2006 Apr; 21(2):179-85. doi:
10.1080/14756360500533109
. [PMID: 16789432] - Toyofumi Nakanishi, Takako Sato, Saburo Sakoda, Masanori Yoshioka, Akira Shimizu. Modification of cysteine residue in transthyretin and a synthetic peptide: analyses by electrospray ionization mass spectrometry.
Biochimica et biophysica acta.
2004 Apr; 1698(1):45-53. doi:
10.1016/j.bbapap.2003.10.005
. [PMID: 15063314] - Yoshihiko Sakurai, Midori Shima, John Giddings, Masahiro Takeyama, Shogo Kasuda, Keiji Nogami, Katsumi Nishiya, Akira Yoshioka. A critical role for thrombin in platelet aggregation under high shear stress.
Thrombosis research.
2004; 113(5):311-8. doi:
10.1016/j.thromres.2004.03.015
. [PMID: 15183043] - Nicole M Okeley, Moushumi Paul, Jay P Stasser, Ninian Blackburn, Wilfred A van der Donk. SpaC and NisC, the cyclases involved in subtilin and nisin biosynthesis, are zinc proteins.
Biochemistry.
2003 Nov; 42(46):13613-24. doi:
10.1021/bi0354942
. [PMID: 14622008] - Shuguang Ma, Richard M Caprioli, Kristina E Hill, Raymond F Burk. Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro.
Journal of the American Society for Mass Spectrometry.
2003 Jun; 14(6):593-600. doi:
10.1016/s1044-0305(03)00141-7
. [PMID: 12781460] - K H Jhee, D Niks, P McPhie, M F Dunn, E W Miles. The reaction of yeast cystathionine beta-synthase is rate-limited by the conversion of aminoacrylate to cystathionine.
Biochemistry.
2001 Sep; 40(36):10873-80. doi:
10.1021/bi011087j
. [PMID: 11535064] - M Friedman. Application of the S-pyridylethylation reaction to the elucidation of the structures and functions of proteins.
Journal of protein chemistry.
2001 Aug; 20(6):431-53. doi:
10.1023/a:1012558530359
. [PMID: 11760118] - K Nogami, M Shima, J C Giddings, K Hosokawa, M Nagata, S Kamisue, H Suzuki, M Shibata, E L Saenko, I Tanaka, A Yoshioka. Circulating factor VIII immune complexes in patients with type 2 acquired hemophilia A and protection from activated protein C-mediated proteolysis.
Blood.
2001 Feb; 97(3):669-77. doi:
10.1182/blood.v97.3.669
. [PMID: 11157483] - . .
.
. doi:
. [PMID: 17567578]
- . .
.
. doi:
. [PMID: 17174334]