Diadenosine hexaphosphate (BioDeep_00000013284)
Secondary id: BioDeep_00001869040
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C20H30N10O25P6 (995.980931)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 14.29%
分子结构信息
SMILES: C([C@@H]1[C@H]([C@H]([C@H](n2cnc3c(N)ncnc23)O1)O)O)OP(=O)(O)OP(=O)(O)OP(=O)(O)OP(=O)(O)OP(=O)(O)OP(=O)(O)OC[C@@H]1[C@H]([C@H]([C@H](n2cnc3c(N)ncnc23)O1)O)O
InChI: InChI=1S/C20H30N10O25P6/c21-15-9-17(25-3-23-15)29(5-27-9)19-13(33)11(31)7(49-19)1-47-56(35,36)51-58(39,40)53-60(43,44)55-61(45,46)54-59(41,42)52-57(37,38)48-2-8-12(32)14(34)20(50-8)30-6-28-10-16(22)24-4-26-18(10)30/h3-8,11-14,19-20,31-34H,1-2H2,(H,35,36)(H,37,38)(H,39,40)(H,41,42)(H,43,44)(H,45,46)(H2,21,23,25)(H2,22,24,26)/t7-,8-,11-,12-,13-,14-,19-,20-/m1/s1
描述信息
Diadenosine hexaphosphate (AP6A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are AP3A, AP4A, AP5A, and AP6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP6A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP6A have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. AP6A have been identified in human platelets and shown to be an important modulator of cardiovascular function. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 16401072, 12738682, 10094777).
Diadenosine hexaphosphate (AP6A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are AP3A, AP4A, AP5A, and AP6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP6A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity.
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
同义名列表
18 个代谢物同义名
{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphinic acid; Adenosine 5-(heptahydrogen hexaphosphate) p->5-ester with adenosine; Adenosine 5-(heptahydrogen hexaphosphate)5-5-ester with adenosine; Adenosine 5-hexaphosphoric acid 5-ester with adenosine; Adenosine 5-hexaphosphate 5-ester with adenosine; p(1),p(6)-Bis(5-adenosyl)hexaphosphoric acid; Diadenosine 5,5-P1,P6-hexaphosphoric acid; P1,P6-Di(adenosine-5)hexaphosphoric acid; P1,P6-Bis(5-adenosyl)hexaphosphoric acid; Adenosine-(5)-hexaphospho-(5)-adenosine; Diadenosine 5,5-P1,P6-hexaphosphate; P1,P6-Di(adenosine-5)hexaphosphate; Diadenosine hexaphosphoric acid; Diadenosine hexaphosphate; BDBM86482; AppppppA; Ap(6)a; AP6a
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:63689
- KEGG: C20190
- PubChem: 4179055
- PubChem: 123694
- HMDB: HMDB0001282
- foodb: FDB022533
- chemspider: 110267
- CAS: 56983-23-4
- PMhub: MS000027710
- PubChem: 163311933
- PDB-CCD: B6P
- RefMet: Diadenosine hexaphosphate
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
3 个相关的代谢反应过程信息。
Reactome(3)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Anna Schulz, Vera Jankowski, Walter Zidek, Joachim Jankowski. Highly sensitive, selective and rapid LC-MS method for simultaneous quantification of diadenosine polyphosphates in human plasma.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2014 Jun; 961(?):91-6. doi:
10.1016/j.jchromb.2014.05.018
. [PMID: 24869945] - Hsing-Mao Chu, Feng-Yuan Chen, Tzu-Ping Ko, Andrew H-J Wang. Binding and catalysis of Humulus lupulus adenylate isopentenyltransferase for the synthesis of isopentenylated diadenosine polyphosphates.
FEBS letters.
2010 Sep; 584(18):4083-8. doi:
10.1016/j.febslet.2010.08.038
. [PMID: 20807533] - V Jankowski, S Karadogan, R Vanholder, J-R Nofer, S Herget-Rosenthal, M van der Giet, M Tölle, T N A Tran, W Zidek, J Jankowski. Paracrine stimulation of vascular smooth muscle proliferation by diadenosine polyphosphates released from proximal tubule epithelial cells.
Kidney international.
2007 May; 71(10):994-1000. doi:
10.1038/sj.ki.5002186
. [PMID: 17361116] - J Luo, J Jankowski, M Tepel, M von Der Giet, W Zidek, H Schlüter. Identification of diadenosine hexaphosphate in human erythrocytes.
Hypertension (Dallas, Tex. : 1979).
1999 Oct; 34(4 Pt 2):872-5. doi:
10.1161/01.hyp.34.4.872
. [PMID: 10523376] - J Jankowski, M Tepel, M van der Giet, I M Tente, L Henning, R Junker, W Zidek, H Schlüter. Identification and characterization of P(1), P(7)-Di(adenosine-5')-heptaphosphate from human platelets.
The Journal of biological chemistry.
1999 Aug; 274(34):23926-31. doi:
10.1074/jbc.274.34.23926
. [PMID: 10446159] - M van der Giet, O Cinkilic, J Jankowski, M Tepel, W Zidek, H Schlüter. Evidence for two different P2X-receptors mediating vasoconstriction of Ap5A and Ap6A in the isolated perfused rat kidney.
British journal of pharmacology.
1999 Jul; 127(6):1463-9. doi:
10.1038/sj.bjp.0702667
. [PMID: 10455297] - M Khattab, H Hohage, P Hollah, K H Rahn, E Schlatter. Effects of diadenosine polyphosphates on systemic and regional hemodynamics in anesthetized rats.
Kidney & blood pressure research.
1998; 21(1):42-9. doi:
10.1159/000025842
. [PMID: 9661136] - A Ogilvie, R Bläsius, E Schulze-Lohoff, R B Sterzel. Adenine dinucleotides: a novel class of signalling molecules.
Journal of autonomic pharmacology.
1996 Dec; 16(6):325-8. doi:
10.1111/j.1474-8673.1996.tb00045.x
. [PMID: 9131408] - H Hohage, C Reinhardt, U Borucki, G Enck, H Schlüter, E Schlatter, W Zidek. Effects of diadenosine polyphosphates on renal function and blood pressure in anesthetized Wistar rats.
Journal of the American Society of Nephrology : JASN.
1996 Aug; 7(8):1216-22. doi:
10.1681/asn.v781216
. [PMID: 8866415] - E Schlatter, I Ankorina, S Haxelmans, R Kleta. Effects of diadenosine polyphosphates, ATP and angiotensin II on cytosolic Ca2+ activity and contraction of rat mesangial cells.
Pflugers Archiv : European journal of physiology.
1995 Sep; 430(5):721-8. doi:
10.1007/bf00386167
. [PMID: 7478924] - H Schlüter, E Offers, G Brüggemann, M van der Giet, M Tepel, E Nordhoff, M Karas, C Spieker, H Witzel, W Zidek. Diadenosine phosphates and the physiological control of blood pressure.
Nature.
1994 Jan; 367(6459):186-8. doi:
10.1038/367186a0
. [PMID: 8114917]