Bifenazate (BioDeep_00000012329)

   

natural product


代谢物信息卡片


Pesticide3_Bifenazate_C17H20N2O3_1-Methylethyl 2-(4-methoxybiphenyl-3-yl)hydrazinecarboxylate

化学式: C17H20N2O3 (300.147385)
中文名称: 联苯肼酯
谱图信息: 最多检出来源 Viridiplantae(plant) 4.08%

分子结构信息

SMILES: CC(C)OC(=O)NNC1=C(C=CC(=C1)C2=CC=CC=C2)OC
InChI: InChI=1S/C17H20N2O3/c1-12(2)22-17(20)19-18-15-11-14(9-10-16(15)21-3)13-7-5-4-6-8-13/h4-12,18H,1-3H3,(H,19,20)

描述信息

Bifenazate is a carbazate acaricide that control 100\% of mites at a concentration of 25 ppm[1]. Bifenazate is a positive allosteric modulator of GABA receptor[2].

同义名列表

2 个代谢物同义名

Bifenazate; Pesticide3_Bifenazate_C17H20N2O3_1-Methylethyl 2-(4-methoxybiphenyl-3-yl)hydrazinecarboxylate



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Masoumeh Abdali, Forough Ghasemi, Hossein Mir Seyed Hosseini, Vahideh Mahdavi. Different sized gold nanoparticles for array-based sensing of pesticides and its application for strawberry pollution monitoring. Talanta. 2024 Jan; 267(?):125121. doi: 10.1016/j.talanta.2023.125121. [PMID: 37672984]
  • Silas Shumate, Maggie Haylett, Brenda Nelson, Nicole Young, Kurt Lamour, Doug Walsh, Benjamin Bradford, Justin Clements. Using targeted sequencing and TaqMan approaches to detect acaricide (bifenthrin, bifenazate, and etoxazole) resistance associated SNPs in Tetranychus urticae collected from peppermint fields and hop yards. PloS one. 2023; 18(3):e0283211. doi: 10.1371/journal.pone.0283211. [PMID: 36952542]
  • Qiuli Hou, Hanqiao Zhang, Jiani Zhu, Fang Liu. Transcriptome Analysis to Identify Responsive Genes under Sublethal Concentration of Bifenazate in the Diamondback Moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). International journal of molecular sciences. 2022 Oct; 23(21):. doi: 10.3390/ijms232113173. [PMID: 36361960]
  • Yanli Bian, Yizhi Feng, Aijuan Zhang, Xiaoxue Qi, Jinju Pan, Jifeng Han, Xingang Ma, Lin Liang. Residue distribution and risk assessment of bifenazate and its metabolite in garlic plant. Food chemistry. 2022 Jun; 379(?):132013. doi: 10.1016/j.foodchem.2021.132013. [PMID: 35063852]
  • Tom R Bilbo, James F Walgenbach. Compatibility of Bifenazate and Phytoseiulus persimilis for Management of Twospotted Spider Mites in North Carolina Staked Tomatoes. Journal of economic entomology. 2020 10; 113(5):2096-2103. doi: 10.1093/jee/toaa159. [PMID: 32740663]
  • Shifeng Liu, Hongru Kou, Baofeng Mu, Jinzhong Wang, Zhiyong Zhang. Dietary risk evaluation of tetraconazole and bifenazate residues in fresh strawberry from protected field in North China. Regulatory toxicology and pharmacology : RTP. 2019 Aug; 106(?):1-6. doi: 10.1016/j.yrtph.2019.04.008. [PMID: 31009652]
  • Jin-Cui Chen, Ya-Jun Gong, Pan Shi, Ze-Hua Wang, Li-Jun Cao, Peng Wang, Shu-Jun Wei. Field-evolved resistance and cross-resistance of the two-spotted spider mite, Tetranychus urticae, to bifenazate, cyenopyrafen and SYP-9625. Experimental & applied acarology. 2019 Apr; 77(4):545-554. doi: 10.1007/s10493-019-00359-3. [PMID: 30997606]
  • Samar Hamdache, Mohamad Sleiman, Pascal de Sainte-Claire, Farouk Jaber, Claire Richard. Unravelling the reactivity of bifenazate in water and on vegetables: Kinetics and byproducts. The Science of the total environment. 2018 Sep; 636(?):107-114. doi: 10.1016/j.scitotenv.2018.04.219. [PMID: 29704707]
  • Annamalai Satheshkumar, Velu Kalaipandian Senthurpandian, Veilumuthu Anandham Shanmugaselvan. Dissipation kinetics of bifenazate in tea under tropical conditions. Food chemistry. 2014 Feb; 145(?):1092-6. doi: 10.1016/j.foodchem.2013.09.042. [PMID: 24128589]
  • Teresia W Nyoike, Oscar E Liburd. Effect of Tetranychus urticae (Acari: Tetranychidae), on marketable yields of field-grown strawberries in north-central Florida. Journal of economic entomology. 2013 Aug; 106(4):1757-66. doi: 10.1603/ec12033. [PMID: 24020290]
  • Ming-Long Yuan, Dan-Dan Wei, Bao-Jun Wang, Wei Dou, Jin-Jun Wang. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC genomics. 2010 Oct; 11(?):597. doi: 10.1186/1471-2164-11-597. [PMID: 20969792]
  • Noubar J Bostanian, Serge Beudjekian, Erin McGregor, Gaétan Racette. A modified excised leaf disc method to estimate the toxicity of slow- and fast-acting reduced-risk acaricides to mites. Journal of economic entomology. 2009 Dec; 102(6):2084-9. doi: 10.1603/029.102.0610. [PMID: 20069835]
  • Andrew Chow, Amanda Chau, Kevin M Heinz. Reducing fertilization for cut roses: effect on crop productivity and twospotted spider mite abundance, distribution, and management. Journal of economic entomology. 2009 Oct; 102(5):1896-907. doi: 10.1603/029.102.0521. [PMID: 19886455]
  • R Fänge, M L Johansson-Sjöbeck. The effect of splenectomy on the hematology and on the activity of delta-aminolevulinic acid dehydratase (ALA-D) in hemopoietic tissues of the dogfish, Scyliorhinus canicula (Elasmobranchii). Comparative biochemistry and physiology. A, Comparative physiology. 1975 Dec; 52(4):577-80. doi: 10.1016/s0300-9629(75)80002-8. [PMID: 1175]