beta-FNA (BioDeep_00000012098)

 

Secondary id: BioDeep_00001869211


代谢物信息卡片


beta-Funaltrexamine

化学式: C25H30N2O6 (454.210376)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC(=O)C=CC(=O)NC1CCC2(C3CC4=C5C2(C1OC5=C(C=C4)O)CCN3CC6CC6)O
InChI: InChI=1S/C25H30N2O6/c1-32-20(30)7-6-19(29)26-16-8-9-25(31)18-12-15-4-5-17(28)22-21(15)24(25,23(16)33-22)10-11-27(18)13-14-2-3-14/h4-7,14,16,18,23,28,31H,2-3,8-13H2,1H3,(H,26,29)/b7-6+/t16-,18-,23+,24+,25-/m1/s1

描述信息

D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists
D009676 - Noxae > D000477 - Alkylating Agents

同义名列表

3 个代谢物同义名

beta-Funaltrexamine; beta-FNA; BRD1641



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Takaaki Komatsu, Soh Katsuyama, Fumihide Takano, Takemasa Okamura, Chikai Sakurada, Minoru Tsuzuki, Kakuyou Ogawa, Atsuhito Kubota, Osamu Morinaga, Kenji Tabata, Tsukasa Sakurada. Possible involvement of the μ opioid receptor in the antinociception induced by sinomenine on formalin-induced nociceptive behavior in mice. Neuroscience letters. 2019 04; 699(?):103-108. doi: 10.1016/j.neulet.2019.01.035. [PMID: 30690119]
  • Randall L Davis, Craig W Stevens, J Thomas Curtis. The opioid antagonist, β-funaltrexamine, inhibits lipopolysaccharide-induced neuroinflammation and reduces sickness behavior in mice. Physiology & behavior. 2017 05; 173(?):52-60. doi: 10.1016/j.physbeh.2017.01.037. [PMID: 28130086]
  • Junpei Mutoh, Masahiro Ohsawa, Hiroaki Hisa. Effect of naloxone on ischemic acute kidney injury in the mouse. Neuropharmacology. 2013 Aug; 71(?):10-8. doi: 10.1016/j.neuropharm.2013.03.001. [PMID: 23523991]
  • Z B Andrews, D R Grattan. Opioid receptor subtypes involved in the regulation of prolactin secretion during pregnancy and lactation. Journal of neuroendocrinology. 2003 Mar; 15(3):227-36. doi: 10.1046/j.1365-2826.2003.00975.x. [PMID: 12588510]
  • F Porreca, S E Burgess, L R Gardell, T W Vanderah, T P Malan, M H Ossipov, D A Lappi, J Lai. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2001 Jul; 21(14):5281-8. doi: 10.1523/jneurosci.21-14-05281.2001. [PMID: 11438603]
  • P Narayan, V K Singh, S S Agarwal, R Tandon, W Haq, R Raghubir, M M Dhar. Immunomodulation by opioid peptidomimetic compound. Neuroimmunomodulation. 2001; 9(3):134-40. doi: 10.1159/000049017. [PMID: 11752886]
  • M D Aceto, L S Harris, M E Abood, K C Rice. Stereoselective mu- and delta-opioid receptor-related antinociception and binding with (+)-thebaine. European journal of pharmacology. 1999 Jan; 365(2-3):143-7. doi: 10.1016/s0014-2999(98)00862-0. [PMID: 9988096]
  • M Bertolucci, C Perego, M G De Simoni. Interleukin-6 is differently modulated by central opioid receptor subtypes. The American journal of physiology. 1997 Sep; 273(3 Pt 2):R956-9. doi: 10.1152/ajpregu.1997.273.3.r956. [PMID: 9321873]
  • K P Briski. Central opioid receptors mediate glucoprivic inhibition of pituitary LH secretion. The American journal of physiology. 1997 Apr; 272(4 Pt 1):E517-22. doi: 10.1152/ajpendo.1997.272.4.e517. [PMID: 9142869]
  • A A Houdi, L Marson, K E Davenport, G R Van Loon. Effects of beta-FNA on sympathoadrenal, cardiovascular, and analgesic responses to DAMPGO at rest and during stress. Pharmacology, biochemistry, and behavior. 1996 Apr; 53(4):927-33. doi: 10.1016/0091-3057(95)02139-6. [PMID: 8801599]
  • H H Garza, O Prakash, D J Carr. Immunologic characterization of TAT72-transgenic mice: effects of morphine on cell-mediated immunity. International journal of immunopharmacology. 1994 Dec; 16(12):1061-70. doi: 10.1016/0192-0561(94)90086-8. [PMID: 7705968]
  • R M Eisenberg. TRIMU-5, a mu 2-opioid receptor agonist, stimulates the hypothalamo-pituitary-adrenal axis. Pharmacology, biochemistry, and behavior. 1994 Apr; 47(4):943-6. doi: 10.1016/0091-3057(94)90300-x. [PMID: 8029266]
  • D R Kapusta, J C Obih. Central kappa opioid receptor-evoked changes in renal function in conscious rats: participation of renal nerves. The Journal of pharmacology and experimental therapeutics. 1993 Oct; 267(1):197-204. doi: NULL. [PMID: 8229746]
  • R M Eisenberg. DAMGO stimulates the hypothalamo-pituitary-adrenal axis through a mu-2 opioid receptor. The Journal of pharmacology and experimental therapeutics. 1993 Aug; 266(2):985-91. doi: . [PMID: 8394926]
  • D Saphier, J E Welch, H E Chuluyan. Alpha-interferon inhibits adrenocortical secretion via mu 1-opioid receptors in the rat. European journal of pharmacology. 1993 May; 236(2):183-91. doi: 10.1016/0014-2999(93)90588-9. [PMID: 8391456]
  • S Rivest, P M Plotsky, C Rivier. CRF alters the infundibular LHRH secretory system from the medial preoptic area of female rats: possible involvement of opioid receptors. Neuroendocrinology. 1993; 57(2):236-46. doi: 10.1159/000126365. [PMID: 8389996]
  • M H Baumann, J Rabii. Inhibition of suckling-induced prolactin release by mu- and kappa-opioid antagonists. Brain research. 1991 Dec; 567(2):224-30. doi: 10.1016/0006-8993(91)90799-2. [PMID: 1667901]
  • M W Gunion, M J Rosenthal, J E Morley, S Miller, B Zib, B Butler, R D Moore. mu-receptor mediates elevated glucose and corticosterone after third ventricle injection of opioid peptides. The American journal of physiology. 1991 Jul; 261(1 Pt 2):R70-81. doi: 10.1152/ajpregu.1991.261.1.r70. [PMID: 1677542]
  • L A Dykstra, D E Gmerek, G Winger, J H Woods. Kappa opioids in rhesus monkeys. II. Analysis of the antagonistic actions of quadazocine and beta-funaltrexamine. The Journal of pharmacology and experimental therapeutics. 1987 Aug; 242(2):421-7. doi: . [PMID: 3302207]
  • A G Hayes, M Skingle, M B Tyers. Evaluation of the receptor selectivities of opioid drugs by investigating the block of their effect on urine output by beta-funaltrexamine. The Journal of pharmacology and experimental therapeutics. 1987 Mar; 240(3):984-8. doi: . [PMID: 3559988]
  • A G Hayes, B R Stewart. Effect of mu and kappa opioid receptor agonists on rat plasma corticosterone levels. European journal of pharmacology. 1985 Oct; 116(1-2):75-9. doi: 10.1016/0014-2999(85)90186-4. [PMID: 2996912]
  • R M Eisenberg. Plasma corticosterone changes in response to central or peripheral administration of kappa and sigma opiate agonists. The Journal of pharmacology and experimental therapeutics. 1985 Jun; 233(3):863-9. doi: NULL. [PMID: 2989500]
  • M Skingle, A G Hayes, M B Tyers. Effects of opiates on urine output in the water-loaded rat and reversal by beta-funaltrexamine. Neuropeptides. 1985 Feb; 5(4-6):433-6. doi: 10.1016/0143-4179(85)90047-2. [PMID: 2987740]
  • J B Wiesner, J I Koenig, L Krulich, R L Moss. Possible delta receptor mediation of the effect of beta-endorphin on luteinizing hormone (LH) release, but not on prolactin (PRL) release, in the ovariectomized rat. Endocrinology. 1985 Jan; 116(1):475-7. doi: 10.1210/endo-116-1-475. [PMID: 2981076]
  • J D Leander. Effects of full and partial kappa agonists and mu agonists on urine output of normally hydrated rats. Neuropeptides. 1984 Dec; 5(1-3):283-6. doi: 10.1016/0143-4179(84)90083-0. [PMID: 6099514]