(2r,4ar,6r,7r,7as)-6-(6-Amino-8-Bromo-9h-Purin-9-Yl)tetrahydro-4h-Furo[3,2-D][1,3,2]dioxaphosphinine-2,7-Diol 2-Sulfide (BioDeep_00001030129)

   


代谢物信息卡片


(2r,4ar,6r,7r,7as)-6-(6-Amino-8-Bromo-9h-Purin-9-Yl)tetrahydro-4h-Furo[3,2-D][1,3,2]dioxaphosphinine-2,7-Diol 2-Sulfide

化学式: C10H11BrN5O5PS (422.9402)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1C2C(C(C(O2)N3C4=NC=NC(=C4N=C3Br)N)O)OP(=S)(O1)O
InChI: InChI=1S/C10H11BrN5O5PS/c11-10-15-4-7(12)13-2-14-8(4)16(10)9-5(17)6-3(20-9)1-19-22(18,23)21-6/h2-3,5-6,9,17H,1H2,(H,18,23)(H2,12,13,14)/t3-,5-,6-,9-,22?/m1/s1



数据库引用编号

2 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Rajakrishnan Veluthakal, Oleg G Chepurny, Colin A Leech, Frank Schwede, George G Holz, Debbie C Thurmond. Restoration of Glucose-Stimulated Cdc42-Pak1 Activation and Insulin Secretion by a Selective Epac Activator in Type 2 Diabetic Human Islets. Diabetes. 2018 10; 67(10):1999-2011. doi: 10.2337/db17-1174. [PMID: 29986926]
  • Dong-Ha Lee, Hyuk-Woo Kwon, Hyun-Hong Kim, Deok Hwi Lim, Gi Suk Nam, Jung-Hae Shin, Yun-Yi Kim, Jong-Lae Kim, Jong-Jin Lee, Ho-Kyun Kwon, Hwa-Jin Park. Cordycepin-enriched WIB801C from Cordyceps militaris inhibits ADP-induced [Ca(2+)] i mobilization and fibrinogen binding via phosphorylation of IP 3R and VASP. Archives of pharmacal research. 2015 Jan; 38(1):81-97. doi: 10.1007/s12272-014-0436-z. [PMID: 25001901]
  • Xu-Feng Qi, Dong-Heui Kim, Yang-Suk Yoon, Jian-Hong Li, Soon-Bong Song, Dan Jin, Xue-Zhu Huang, Yung-Chien Teng, Kyu-Jae Lee. The adenylyl cyclase-cAMP system suppresses TARC/CCL17 and MDC/CCL22 production through p38 MAPK and NF-kappaB in HaCaT keratinocytes. Molecular immunology. 2009 Jun; 46(10):1925-34. doi: 10.1016/j.molimm.2009.03.018. [PMID: 19371952]
  • Dennis K Y Yeung, Susan W S Leung, Yan Chun Xu, Paul M Vanhoutte, Ricky Y K Man. Puerarin, an isoflavonoid derived from Radix puerariae, potentiates endothelium-independent relaxation via the cyclic AMP pathway in porcine coronary artery. European journal of pharmacology. 2006 Dec; 552(1-3):105-11. doi: 10.1016/j.ejphar.2006.08.078. [PMID: 17027964]
  • Cheorl-Ho Kim, Byung-Soo Koo, Kyeong-Ok Kim, June-Ki Kim, Young-Chae Chang, In-Seon Lee. Salviae miltiorrhizae radix increases dopamine release of rat and pheochromocytoma PC12 cells. Phytotherapy research : PTR. 2006 Mar; 20(3):191-9. doi: 10.1002/ptr.1833. [PMID: 16521109]
  • I Pellerin, M Leclerc, D Claveau, J Mailloux, M G Brunette. Roles of ATP and cytoskeleton in the regulation of Na+/H+ exchanger along the nephron luminal membrane. Journal of cellular physiology. 2001 Apr; 187(1):109-16. doi: 10.1002/1097-4652(2001)9999:9999<::aid-jcp1054>3.0.co;2-6. [PMID: 11241355]
  • E S Choe, J F McGinty. Cyclic AMP and mitogen-activated protein kinases are required for glutamate-dependent cyclic AMP response element binding protein and Elk-1 phosphorylation in the dorsal striatum in vivo. Journal of neurochemistry. 2001 Jan; 76(2):401-12. doi: 10.1046/j.1471-4159.2001.00051.x. [PMID: 11208903]
  • Q Chen, R Patel, A Sales, G Oji, J Kim, A W Monreal, R D Brinton. Vasopressin-induced neurotrophism in cultured neurons of the cerebral cortex: dependency on calcium signaling and protein kinase C activity. Neuroscience. 2000; 101(1):19-26. doi: 10.1016/s0306-4522(00)00323-7. [PMID: 11068133]