3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-{[3-oxo-3-({2-[(3,7,11,15-tetramethylhexadecanoyl)sulfanyl]ethyl}amino)propyl]amino}butyl] dihydrogen diphosphate} (BioDeep_00001029059)

   


代谢物信息卡片


3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-{[3-oxo-3-({2-[(3,7,11,15-tetramethylhexadecanoyl)sulfanyl]ethyl}amino)propyl]amino}butyl] dihydrogen diphosphate}

化学式: C41H74N7O17P3S (1061.4075)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)SCCNC(=O)CCNC(=O)C(C(C)(C)COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O
InChI: InChI=1S/C41H74N7O17P3S/c1-26(2)11-8-12-27(3)13-9-14-28(4)15-10-16-29(5)21-32(50)69-20-19-43-31(49)17-18-44-39(53)36(52)41(6,7)23-62-68(59,60)65-67(57,58)61-22-30-35(64-66(54,55)56)34(51)40(63-30)48-25-47-33-37(42)45-24-46-38(33)48/h24-30,34-36,40,51-52H,8-23H2,1-7H3,(H,43,49)(H,44,53)(H,57,58)(H,59,60)(H2,42,45,46)(H2,54,55,56)/t27?,28?,29?,30-,34-,35-,36+,40-/m1/s1



数据库引用编号

2 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(5)

BioCyc(0)

PlantCyc(0)

代谢反应

77 个相关的代谢反应过程信息。

Reactome(70)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(7)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Wentao Yang, Philipp Gutbrod, Katharina Gutbrod, Helga Peisker, Xiaoning Song, Anna-Lena Falz, Andreas J Meyer, Peter Dörmann. 2-Hydroxy-phytanoyl-CoA lyase (AtHPCL) is involved in phytol metabolism in Arabidopsis. The Plant journal : for cell and molecular biology. 2022 03; 109(5):1290-1304. doi: 10.1111/tpj.15632. [PMID: 34902195]
  • Wagner L Araújo, Kimitsune Ishizaki, Adriano Nunes-Nesi, Takayuki Tohge, Tony R Larson, Ina Krahnert, Ilse Balbo, Sandra Witt, Peter Dörmann, Ian A Graham, Christopher J Leaver, Alisdair R Fernie. Analysis of a range of catabolic mutants provides evidence that phytanoyl-coenzyme A does not act as a substrate of the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex in Arabidopsis during dark-induced senescence. Plant physiology. 2011 Sep; 157(1):55-69. doi: 10.1104/pp.111.182188. [PMID: 21788362]
  • Tomoyuki Fukasawa, Koichiro Murashima, Tomoko Nemoto, Ichiro Matsumoto, Jinichiro Koga, Hidetoshi Kubota, Minoru Kanegae. Identification of marker genes for lipid-lowering effect of a short-chain fructooligosaccharide by DNA microarray analysis. Journal of dietary supplements. 2009; 6(3):254-62. doi: 10.1080/19390210903070822. [PMID: 22435477]
  • Veerle Foulon, Stanny Asselberghs, Wendy Geens, Guy P Mannaerts, Minne Casteels, Paul P Van Veldhoven. Further studies on the substrate spectrum of phytanoyl-CoA hydroxylase: implications for Refsum disease?. Journal of lipid research. 2003 Dec; 44(12):2349-55. doi: 10.1194/jlr.m300230-jlr200. [PMID: 12923223]
  • N M Verhoeven, R J Wanders, D S Schor, G A Jansen, C Jakobs. Phytanic acid alpha-oxidation: decarboxylation of 2-hydroxyphytanoyl-CoA to pristanic acid in human liver. Journal of lipid research. 1997 Oct; 38(10):2062-70. doi: . [PMID: 9374128]
  • P A Watkins, A E Howard, S J Gould, J Avigan, S J Mihalik. Phytanic acid activation in rat liver peroxisomes is catalyzed by long-chain acyl-CoA synthetase. Journal of lipid research. 1996 Nov; 37(11):2288-95. doi: . [PMID: 8978480]
  • K Pahan, M Khan, I Singh. Phytanic acid oxidation: normal activation and transport yet defective alpha-hydroxylation of phytanic acid in peroxisomes from Refsum disease and rhizomelic chondrodysplasia punctata. Journal of lipid research. 1996 May; 37(5):1137-43. doi: . [PMID: 8725164]