Allylglucosinolate (BioDeep_00001028973)
代谢物信息卡片
化学式: C10H16NO9S2- (358.0266466)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 37.5%
分子结构信息
SMILES: C=CCC(=NOS(=O)(=O)[O-])SC1C(C(C(C(O1)CO)O)O)O
InChI: InChI=1S/C10H17NO9S2/c1-2-3-6(11-20-22(16,17)18)21-10-9(15)8(14)7(13)5(4-12)19-10/h2,5,7-10,12-15H,1,3-4H2,(H,16,17,18)/p-1/b11-6-/t5-,7-,8+,9-,10+/m1/s1
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
17 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(17)
- glucosinolate biosynthesis from homomethionine:
H2O + O2 + glucoiberin ⟶ 3-hydroxypropyl-glucosinolate + H+ + methanesulfonate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
O2 + glucoiberin ⟶ H+ + methanesulfonate + sinigrin
- glucosinolate biosynthesis from homomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
H2O + O2 + glucoiberin ⟶ 3-hydroxypropyl-glucosinolate + H+ + methanesulfonate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(E)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (E)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
- glucosinolate biosynthesis from homomethionine:
(Z)-1-(L-cystein-S-yl)-N-hydroxy-ω-(methylsulfanyl)butan-1-imine + H2O ⟶ (Z)-ω-(methylsulfanyl)butyl-thiohydroximate + ammonium + pyruvate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Cong Cong, Xiaohong Yuan, Ying Hu, Wenjing Chen, Yong Wang, Lei Tao. Sinigrin attenuates angiotensin II‑induced kidney injury by inactivating nuclear factor‑κB and extracellular signal‑regulated kinase signaling in vivo and in vitro.
International journal of molecular medicine.
2021 Aug; 48(2):. doi:
10.3892/ijmm.2021.4994
. [PMID: 34278443] - Jilan Nazeam, Esraa Z Mohammed, Mariam Raafat, Mariam Houssein, Asmaa Elkafoury, Dina Hamdy, Lina Jamil. Based on Principles and Insights of COVID-19 Epidemiology, Genome Sequencing, and Pathogenesis: Retrospective Analysis of Sinigrin and ProlixinRX (Fluphenazine) Provides Off-Label Drug Candidates.
SLAS discovery : advancing life sciences R & D.
2020 12; 25(10):1123-1140. doi:
10.1177/2472555220950236
. [PMID: 32804597] - Maria Fernanda Lopez-Rodriguez, Nadia Cymbaluk, Tasha Epp, Bernard Laarveld, Elena Carolina Serrano Recalde, Elemir Simko, Claire Card. Effects of the Glucosinolate Sinigrin in Combination With a Noniodine Supplemented Diet on Serum Iodine and Thyroid Hormone Concentrations in Nonpregnant Mares.
Journal of equine veterinary science.
2020 08; 91(?):103110. doi:
10.1016/j.jevs.2020.103110
. [PMID: 32684255] - Yeon Jeong Jang, Bongkyun Park, Hee-Weon Lee, Hye Jin Park, Hyun Jung Koo, Byung Oh Kim, Eun-Hwa Sohn, Sung Hee Um, Suhkneung Pyo. Sinigrin attenuates the progression of atherosclerosis in ApoE-/- mice fed a high-cholesterol diet potentially by inhibiting VCAM-1 expression.
Chemico-biological interactions.
2017 Jun; 272(?):28-36. doi:
10.1016/j.cbi.2017.05.006
. [PMID: 28483571] - Saurabh Awasthi, N T Saraswathi. Elucidating the molecular interaction of sinigrin, a potent anticancer glucosinolate from cruciferous vegetables with bovine serum albumin: effect of methylglyoxal modification.
Journal of biomolecular structure & dynamics.
2016 Oct; 34(10):2224-32. doi:
10.1080/07391102.2015.1110835
. [PMID: 26488200] - Saurabh Awasthi, N T Saraswathi. Sinigrin, a major glucosinolate from cruciferous vegetables restrains non-enzymatic glycation of albumin.
International journal of biological macromolecules.
2016 Feb; 83(?):410-5. doi:
10.1016/j.ijbiomac.2015.11.019
. [PMID: 26571343] - Maria del Carmen Martínez-Ballesta, Beatriz Muries, Diego Ángel Moreno, Raúl Dominguez-Perles, Cristina García-Viguera, Micaela Carvajal. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress.
Physiologia plantarum.
2014 Feb; 150(2):145-60. doi:
10.1111/ppl.12082
. [PMID: 23837634] - Monika Okulicz. Multidirectional time-dependent effect of sinigrin and allyl isothiocyanate on metabolic parameters in rats.
Plant foods for human nutrition (Dordrecht, Netherlands).
2010 Sep; 65(3):217-24. doi:
10.1007/s11130-010-0183-3
. [PMID: 20809411] - Vanessa Rungapamestry, Sylvie Rabot, Zoë Fuller, Brian Ratcliffe, Alan J Duncan. Influence of cooking duration of cabbage and presence of colonic microbiota on the excretion of N-acetylcysteine conjugates of allyl isothiocyanate and bioactivity of phase 2 enzymes in F344 rats.
The British journal of nutrition.
2008 Apr; 99(4):773-81. doi:
10.1017/s0007114507841134
. [PMID: 17967216] - Eun-Sun Hwang, Hyong Joo Lee. Induction of quinone reductase by allylisothiocyanate (AITC) and the N-acetylcysteine conjugate of AITC in Hepa1c1c7 mouse hepatoma cells.
BioFactors (Oxford, England).
2006; 26(1):7-15. doi:
10.1002/biof.5520260102
. [PMID: 16614479] - Gabrielle Rouzaud, Sheila A Young, Alan J Duncan. Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteers.
Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.
2004 Jan; 13(1):125-31. doi:
10.1158/1055-9965.epi-085-3
. [PMID: 14744743] - E-S Hwang, E H Jeffery. Evaluation of urinary N-acetyl cysteinyl allyl isothiocyanate as a biomarker for intake and bioactivity of Brussels sprouts.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2003 Dec; 41(12):1817-25. doi:
10.1016/s0278-6915(03)00235-7
. [PMID: 14563407] - Cyrille Krul, Christèle Humblot, Catherine Philippe, Martijn Vermeulen, Marleen van Nuenen, Robert Havenaar, Sylvie Rabot. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model.
Carcinogenesis.
2002 Jun; 23(6):1009-16. doi:
10.1093/carcin/23.6.1009
. [PMID: 12082023] - B Combourieu, L Elfoul, A M Delort, S Rabot. Identification of new derivatives of sinigrin and glucotropaeolin produced by the human digestive microflora using 1H NMR spectroscopy analysis of in vitro incubations.
Drug metabolism and disposition: the biological fate of chemicals.
2001 Nov; 29(11):1440-5. doi:
. [PMID: 11602519]
- P J Kelly, A Bones, J T Rossiter. Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea.
Planta.
1998 Oct; 206(3):370-7. doi:
10.1007/s004250050412
. [PMID: 9763706] - V K Srivastava, D C Hill. Thiocyanate ion formation in rapeseed meals.
Canadian journal of biochemistry.
1975 May; 53(5):630-3. doi:
10.1139/o75-085
. [PMID: 1139401]