2-[(2,6-dimethylphenyl)amino]-N,N,N-triethyl-2-oxoethanaminium (BioDeep_00001028799)

   


代谢物信息卡片


2-[(2,6-dimethylphenyl)amino]-N,N,N-triethyl-2-oxoethanaminium

化学式: C16H27N2O+ (263.2123272)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC[N+](CC)(CC)CC(=O)NC1=C(C=CC=C1C)C
InChI: InChI=1S/C16H26N2O/c1-6-18(7-2,8-3)12-15(19)17-16-13(4)10-9-11-14(16)5/h9-11H,6-8,12H2,1-5H3/p+1

描述信息

D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents

同义名列表

1 个代谢物同义名

2-[(2,6-dimethylphenyl)amino]-N,N,N-triethyl-2-oxoethanaminium



数据库引用编号

3 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Hirosato Kanda, Yanjing Yang, Shaoqi Duan, Yoko Kogure, Shenglan Wang, Emiko Iwaoka, Miku Ishikawa, Saki Takeda, Hidemi Sonoda, Kyoka Mizuta, Shunji Aoki, Satoshi Yamamoto, Koichi Noguchi, Yi Dai. Atractylodin Produces Antinociceptive Effect through a Long-Lasting TRPA1 Channel Activation. International journal of molecular sciences. 2021 Mar; 22(7):. doi: 10.3390/ijms22073614. [PMID: 33807167]
  • Qinqin Yin, Bowen Ke, Xiaobing Chen, Yikai Guan, Ping Feng, Guo Chen, Yi Kang, Wensheng Zhang, Yu Nie. Effects of Liposomes Charge on Extending Sciatic Nerve Blockade of N-ethyl Bromide of Lidocaine in Rats. Scientific reports. 2016 12; 6(?):38582. doi: 10.1038/srep38582. [PMID: 27924842]
  • Kiichiro Yamaguchi, Kentaro Ono, Suzuro Hitomi, Misa Ito, Tomotaka Nodai, Tetsuya Goto, Nozomu Harano, Seiji Watanabe, Hiromasa Inoue, Kanako Miyano, Yasuhito Uezono, Motohiro Matoba, Kiyotoshi Inenaga. Distinct TRPV1- and TRPA1-based mechanisms underlying enhancement of oral ulcerative mucositis-induced pain by 5-fluorouracil. Pain. 2016 May; 157(5):1004-1020. doi: 10.1097/j.pain.0000000000000498. [PMID: 26808144]
  • Thomas Stueber, Mirjam J Eberhardt, Christoph Hadamitzky, Annette Jangra, Stefan Schenk, Felicia Dick, Carsten Stoetzer, Katrin Kistner, Peter W Reeh, Alexander M Binshtok, Andreas Leffler. Quaternary Lidocaine Derivative QX-314 Activates and Permeates Human TRPV1 and TRPA1 to Produce Inhibition of Sodium Channels and Cytotoxicity. Anesthesiology. 2016 May; 124(5):1153-65. doi: 10.1097/aln.0000000000001050. [PMID: 26859646]
  • James Allen Frank, Mirko Moroni, Rabih Moshourab, Martin Sumser, Gary R Lewin, Dirk Trauner. Photoswitchable fatty acids enable optical control of TRPV1. Nature communications. 2015 May; 6(?):7118. doi: 10.1038/ncomms8118. [PMID: 25997690]
  • Jong Chul Kim, Yong-Il Chungt, Young Ha Kim, Giyoong Tae. The modulation of the permeability and the cellular uptake of liposome by stable anchoring of lipid-conjugated pluronic on liposome. Journal of biomedical nanotechnology. 2014 Jan; 10(1):100-8. doi: 10.1166/jbn.2014.1788. [PMID: 24724502]
  • Xiao-Tao Jin, Jean-Francois Paré, Yoland Smith. GABA transporter subtype 1 and GABA transporter subtype 3 modulate glutamatergic transmission via activation of presynaptic GABA(B) receptors in the rat globus pallidus. The European journal of neuroscience. 2012 Aug; 36(4):2482-92. doi: 10.1111/j.1460-9568.2012.08147.x. [PMID: 22616751]
  • Arthur Beyder, Peter R Strege, Santiago Reyes, Cheryl E Bernard, Andre Terzic, Jonathan Makielski, Michael J Ackerman, Gianrico Farrugia. Ranolazine decreases mechanosensitivity of the voltage-gated sodium ion channel Na(v)1.5: a novel mechanism of drug action. Circulation. 2012 Jun; 125(22):2698-706. doi: 10.1161/circulationaha.112.094714. [PMID: 22565935]
  • Hae-Jeong Jeong, Daowei Lin, Liaoliao Li, Zhiyi Zuo. Delayed treatment with lidocaine reduces mouse microglial cell injury and cytokine production after stimulation with lipopolysaccharide and interferon γ. Anesthesia and analgesia. 2012 Apr; 114(4):856-61. doi: 10.1213/ane.0b013e3182460ab5. [PMID: 22253275]
  • Andreas Leffler, Anja Lattrell, Sergej Kronewald, Florian Niedermirtl, Carla Nau. Activation of TRPA1 by membrane permeable local anesthetics. Molecular pain. 2011 Aug; 7(?):62. doi: 10.1186/1744-8069-7-62. [PMID: 21861907]
  • Leonardo Rigoldi Bonjardim, Adriana Pelegrini da Silva, Gustavo Hauber Gameiro, Cláudia Herrera Tambeli, Maria Cecília Ferraz de Arruda Veiga. Nociceptive behavior induced by mustard oil injection into the temporomandibular joint is blocked by a peripheral non-opioid analgesic and a central opioid analgesic. Pharmacology, biochemistry, and behavior. 2009 Jan; 91(3):321-6. doi: 10.1016/j.pbb.2008.08.001. [PMID: 18755210]
  • Marc Laffon, Christian Jayr, Pascal Barbry, Ybing Wang, Hans G Folkesson, Jean-Francois Pittet, Christine Clerici, Michael A Matthay. Lidocaine induces a reversible decrease in alveolar epithelial fluid clearance in rats. Anesthesiology. 2002 Feb; 96(2):392-9. doi: 10.1097/00000542-200202000-00026. [PMID: 11818773]
  • H Kutchai, L M Geddis. Inhibition of the Na,K-ATPase of canine renal medulla by several local anesthetics. Pharmacological research. 2001 Apr; 43(4):399-403. doi: 10.1006/phrs.2001.0803. [PMID: 11352545]
  • M W Hollmann, L G Fischer, A M Byford, M E Durieux. Local anesthetic inhibition of m1 muscarinic acetylcholine signaling. Anesthesiology. 2000 Aug; 93(2):497-509. doi: 10.1097/00000542-200008000-00030. [PMID: 10910501]
  • G K Wang, C Quan, S Y Wang. Local anesthetic block of batrachotoxin-resistant muscle Na+ channels. Molecular pharmacology. 1998 Aug; 54(2):389-96. doi: 10.1124/mol.54.2.389. [PMID: 9687581]
  • G K Wang, C Quan, S Wang. A common local anesthetic receptor for benzocaine and etidocaine in voltage-gated mu1 Na+ channels. Pflugers Archiv : European journal of physiology. 1998 Jan; 435(2):293-302. doi: 10.1007/s004240050515. [PMID: 9382945]
  • A Tinker, A J Williams. Charged local anesthetics block ionic conduction in the sheep cardiac sarcoplasmic reticulum calcium release channel. Biophysical journal. 1993 Aug; 65(2):852-64. doi: 10.1016/s0006-3495(93)81104-4. [PMID: 8218909]
  • G W Zamponi, D D Doyle, R J French. Fast lidocaine block of cardiac and skeletal muscle sodium channels: one site with two routes of access. Biophysical journal. 1993 Jul; 65(1):80-90. doi: 10.1016/s0006-3495(93)81042-7. [PMID: 8396459]
  • L Xu, R Jones, G Meissner. Effects of local anesthetics on single channel behavior of skeletal muscle calcium release channel. The Journal of general physiology. 1993 Feb; 101(2):207-33. doi: 10.1085/jgp.101.2.207. [PMID: 8384242]
  • J Nettleton, G K Wang. pH-dependent binding of local anesthetics in single batrachotoxin-activated Na+ channels. Cocaine vs. quaternary compounds. Biophysical journal. 1990 Jul; 58(1):95-106. doi: 10.1016/s0006-3495(90)82356-0. [PMID: 2166603]
  • G K Wang. Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers. The Journal of general physiology. 1988 Dec; 92(6):747-65. doi: 10.1085/jgp.92.6.747. [PMID: 2851029]